Using Small Satellite Constellations for the Measurement of Aerosol and Cloud Interaction

J. Vanderlei Martins, Roberto Fernandez-Borda, Brent McBride, Lorraine Remer Dept. of Physics and JCET – UMBC Earth and Space Institute

https://ESI.umbc.edu

SmallSats:

- Size of small satellites can vary from golf balls to small refrigerators
 - Small satellites have evolved into real science tools for remote sensing measurements in multiple fields
- Their small cost allow for constellations that are not practical with larger platforms
- HARP as an example of science measurements from small satellite platforms
- Discuss a smallsat constellation concept for the measurement of the interaction between aerosol and clouds

https://ESI.umbc.edu

HARP Polarimeter Specs

- ISS orbit
- 60 viewing angles (cloudbows)
- 20 angles for aerosols
- 440, 550, 670, 870nm
- Nadir pixel resolution 400m
- Nadir super pixel < 4x4km
- 94 deg FOV X-track
- 113 deg FOV along track

Repeat for all along track viewing angles

HARP CubeSat Satellite

Funding: ESTO InVEST Program Expected launch: Spring 2019

Imaging polarimeter

HARP – Full Feature Earth Sciences Satellite

- Accurate ACDS
- Sun Sensor + Star tracker
- < 0.66km pointing knowledge/geolocation
- UHF radio up to 3Mbits/s

ISS orbit crosses within minutes of other satellites several times a day (example: 13 Apr 2016):

- Terra < 1 min
- NPP < 1min
- Aqua < 5 min
- Aqua < 5 min
- NPP < 5 min

HARP Hyper-Angular Multi-Wavelength Polarization Images

Backward **HARP Prism Polarization Separation** Intensity_{0°} Stripe Filters: Angular 6 and Wavelength Separation 40 Intensity_{45°} Nadir Intensity₉₀ Forward view :06 Linearly Polarized and 45 ó HARP's measured filter transmission at Images Multi/Hyper Angle with multiple pushbrooms 550 750

450

650

Wavelength

850

950

Push-broom images from individual angles

Is not visible in all angles

Multiple Angles

Multi-Angle Observation

Notice that sunglint Is not visible in all angles

Multiple Angles

Arizona Fires During ACEPOL

> UMBC Air HARP

Rayleigh Scattering Pattern

Low Degree of Linear Polarization from Fresh Smoke

Calibration Validation with Partial Polarization Generator

ΗA

HARP Polarimeter Family:

HARP VNIR Telescope

HARP2 joins the PACE Mission

Demonstrated cloud side measurements aiming for Aerosol Cloud Interaction Studies

Previous CLAIM-3D Proposal: Hyperangular Polarization + High Resolution Clouds

UV to SWIR Imaging polarimeter for 6U Microsats

6U CloudScanner: Pointable Hi-Resolution Imagers from UV to TIR

- ~ 100 m resolution
- Possible Wavelengths:
 - UV: 0.34 0.38μm VNIR: 0.44 – 1μm
 - SWIR: 1.2 2.3μm
 - TIR: 8 12μm

- A constellation of Small Satellites provides a real opportunity for the measurement of aerosol cloud interactions from space
- Cloud Side Measurements provide important information on the cloud vertical development, microphysics, thermodynamics and small scale cloud dynamics
- Cloud Glaciation levels are simple to measure from cloud side observations and provide important information on the interaction between Aerosols and Clouds

https://ESI.umbc.edu

Backup Slides

AirHARP – Aircraft Demonstration

NASA ER2 - Oct 2017

NASA Langley UC12 June 2017

Vicarious Calibration/Intercomparison Opportunities - ACEPOL

Sampling from Multiple Geometries Preliminary Intercomparision with RSP (Still Needs Improvement in Pointing)

Air

HARP

HARP CubeSat

- ISS orbit 400 km
- 4 km nadir resolution
- 94° cross-track, 113° along-track swath
- Up to 60 (20) view angles at 670nm (440, 550,870nm)
- Sampling: Few Thousand km per day

Onboard Calibration:

- Moon and Limb observations
- Vicarious calibrations over AERONET stations, sunglint, clouds, etc.
- Aircraft airborne polarimeters (including AirHARP) and in situ measurements

Sun-synchronous 676km – 1PM

- 3 km nadir resolution
- 94° cross-track, 113° along-track swath
- Up to 60 (20) view angles at 670nm (440, 550,870nm)
- Global Coverage in 2 days
- Improved SNR DoLP accuracy goal < 1%</p>
- Improved Polarization at 870nm

Onboard Calibration:

- Radiometric cross calibration with OCI
- Polarimetric/Radiometric cross calibration with SPEXOne
- Moon and Limb observations (OCI cal)
- · Vicarious calibrations over AERONET stations, sunglint, clouds, etc.
- · Aircraft airborne polarimeters/in situ
- Goal: Onboard flat field reference for extending calibration to all FOVs (in discussion for solar cal)

UMBC AirHARP and AirSPEX from ER2

HARP cloud retrievals can be done for any pixel in the FOV, even for **heterogeneous clouds**, like this case (left) from LMOS on June 19, 2017.

Polarized radiance is converted to reflectance (*Rp*) and parametrically matched to Mie phase functions:

$$R_P = \frac{\pi \sqrt{Q^2 + U^2}}{F_0 \cos \vartheta_z} = \alpha P_{12}(\vartheta) + \beta \cos^2 \theta + \gamma$$

Evaluating this relationship on the solar principal plane gives the *effective radius* (r_{eff}) and *variance* (v_{eff}) of a cloud scene from the recovered Mie P₁₂.

0.5

0.4

C.0. C.0. Reflectance

0.1

87°W

Level 2 retrieval algorithms and adaptation of HARP data to GRASP for aerosol retrieval are underway.

LMOS

HARP Pioneering Hyper-Angular Capability from Space will Provide Full Cloudbow Retrievals from Small Area (~4x4km)

28

HARP CubeSat Polarimeter

HARP Pioneering Hyper-Angular Capability will Provide Full Cloudbow Retrievals from Small Area (< 4x4km from space)

Evaluation of Cloud 3D Properties

LES and 3D RT simulations by Chamara Rajapakshe and Zhibo Zhang

AirHARP Data Set by Vanderlei Martins, Brent McBride and H. Barbosa

Preliminary AirHARP Data LMOS Campaign June 2017

© University of Maryland, Baltimore County • 1000 Hilltop Circle • Baltimore, MD 21250