

CONSISTENT ALGORITHM SCIENCE ACROSS SATELLITE SENSORS FOR AOD RETRIEVAL

Hongqing Liu, Istvan Laszlo, Shobha Kondragunta, Hai Zhang, and Mi Zhou

6th AeroSat Meeting, College Park, MD October 18, 2018

ENTERPRISE APPROACH

- Same method (physics and assumptions) and its realization (software) are applied to retrieve aerosol optical depth (AOD) regardless of source of satellite input.
- \circ The "enterprise" algorithm is NOT a "proper subset" algorithm (not only algorithm A \cap algorithm B)
 - does not ignore information available from a more capable sensor;
 - instrument specific tasks are built around a common core.

ALGORITHM OVERVIEW

- Retrieve AOD from multispectral, single-look, unpolarized reflectances
- Separate retrievals over land and water
- Separate paths over dark and bright land
- \circ At pixel-level

OVER-WATER COMMON CORE ALGORITHM

o MODIS heritage (Tanré et al., 1997; Remer et al., 2005)

• Surface reflectance

- calculated from model as sum of bidirectional and Lambertian (water-leaving and white foam) reflectances
- depends on wind speed and direction
- coupling of atmosphere and surface is calculated outside of lookup table

\circ Aerosol model:

- four fine mode and five coarse mode aerosol models (MODIS C5 models)
- Assumes aerosol TOA reflectance is fine-mode-weighted average of fine and coarse mode reflectances
- TOA reflectances calculated in selected channels are compared to observed ones to retrieve AOD, pair of fine and coarse mode aerosol models and fraction of fine mode simultaneously.
- \circ Require a reference channel (0.86µm) and at least one residual channel

CHANNELS USED OVER LAND

OVER-LAND COMMON CORE ALGORITHM

• MODIS heritage (Kaufman et al., 1997; Levy et al., 2007; Vermote et al., 2008, Hsu et al., 2013)

• Surface reflectance

- assumed to be lambertian
- prescribed spectral relationship as a function of surface type and geometry

• Aerosol model:

- four aerosol models: dust, generic, urban and smoke (MODIS C5 models)
- In general, AOD, aerosol model and surface reflectance are retrieved simultaneously
- Matchup of the calculated and observed TOA reflectances is performed at the blue channel where lower surface reflection and stronger aerosol reflection coexist within the SW spectrum.
- Require the measurements at blue and red/SWIR channels

OVER DARK LAND - SURFACE

For healthy vegetation, blue, red and SWIR (2.2 μ m) surface reflectances (ρ) are correlated (*Kaufman et al.*, 1997) – Used to decrease number of unknowns.

• SWIR-scheme: $\rho_{SWIR} \rightarrow \rho_{Red} \rightarrow \rho_{Blue}$ Pros: transparent at SWIR channel Cons: uncertainty of the relationship • SW-scheme: $\rho_{\text{Red}} \rightarrow \rho_{\text{Blue}}$ Pros: less uncertainty of the relationship

Cons: less transparent at red channel

OVER DARK LAND - SURFACE

For healthy vegetation, blue, red and SWIR (2.2 μ m) surface reflectances (ρ) are correlated (*Kaufman et al.*, 1997) – Used to decrease number of unknowns.

• SWIR-scheme: $\rho_{SWIR} \rightarrow \rho_{Red} \rightarrow \rho_{Blue}$

Pros: transparent at SWIR channel

Cons: uncertainty of the relationship

• SW-scheme: $\rho_{\text{Red}} \rightarrow \rho_{\text{Blue}}$

Pros: less uncertainty of the relationship

Cons: less transparent at red channel

OVER DARK LAND - RETRIEVAL

- Two variants of the dark-target approach:
 - **SW-scheme** : blue and red channels as the reference, preferred for low AOD
 - **SWIR-scheme** : blue and SWIR channels as the reference, preferred for high AOD

- Combination: SW to SWIR switch
 - $|\rho_{M3}(SW)-\rho_{M3}(SWIR)| > threshold$
- Model selection
 - Select the aerosol model with minimum difference of the calculated and measured reflectance at the residual channels

6th AeroSat Meeting, College Park, MD October 18, 2018

OVER BRIGHT LAND

- Derive regional (0.1°x0.1°) database
 of bright surface spectral reflectance
 relationship
 - Ratios tend to be less variable than albedos
 - Function of geometry
- Retrieval uses blue/deep-blue and red channels

ACROSS SENSORS – CHANNEL DIFFERENCE

- Lookup tables, coefficients and land surface reflectance relationship need to be generated for each sensor.
- Selection of aerosol model is impacted due to different residual channels used.

ACROSS SENSORS – GEOMETRY DIFFERENCE

^{6&}lt;sup>th</sup> AeroSat Meeting, College Park, MD October 18, 2018

Mixture of spheroids 100 **0.86**µm - Fine1 -Spheres - Fine2 100 -- Fine3 Spheroid mixture 10 - Fine4 Coarse1 Phase Function Coarse2 10 Coarse3 Coarse4 Coarse5 0.1 0.1 20 60 80 120 140 160 180 40 100 0 80 120 160 40 Scattering Angle [Degree] Scattering angle (degree)

2018222_0700 **GOES-16 ABI**

2018-08-10 NPP VIIRS

NOV. 2012 – DEC. 2017

GOES16 EPS AOD VALIDATION DEC. 14, 2017 – OCT. 6, 2018

CHALLENGES

- Surface reflectance
 - Better parameterization
 - Globally general or regionally specific ?
- Aerosol model
 - Continuous vs. discrete
 - Specified vs. selection
- Algorithm design
 - Consistency vs. variation
 - Constraint vs. independence

