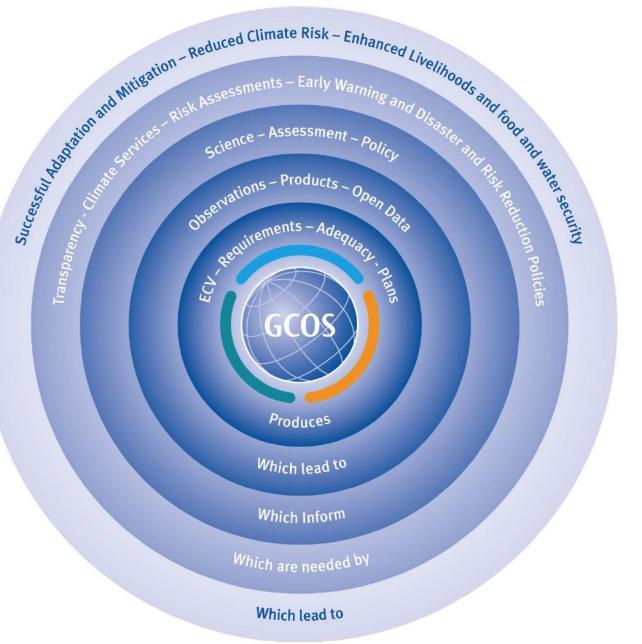


Atmospheric Observation Panel for Climate

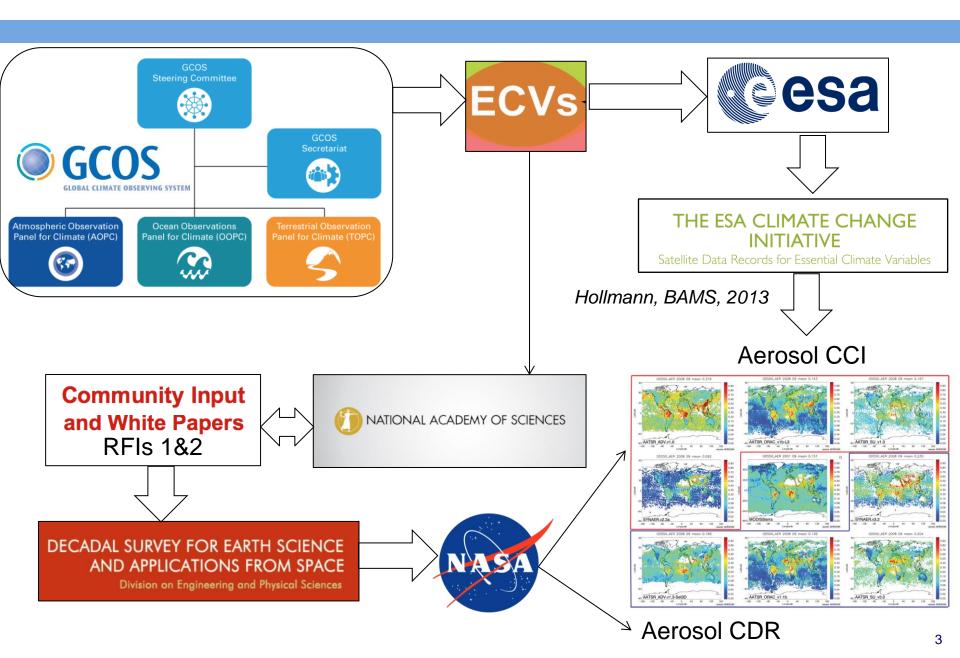
GCOS aerosol requirements/ statement of guidance

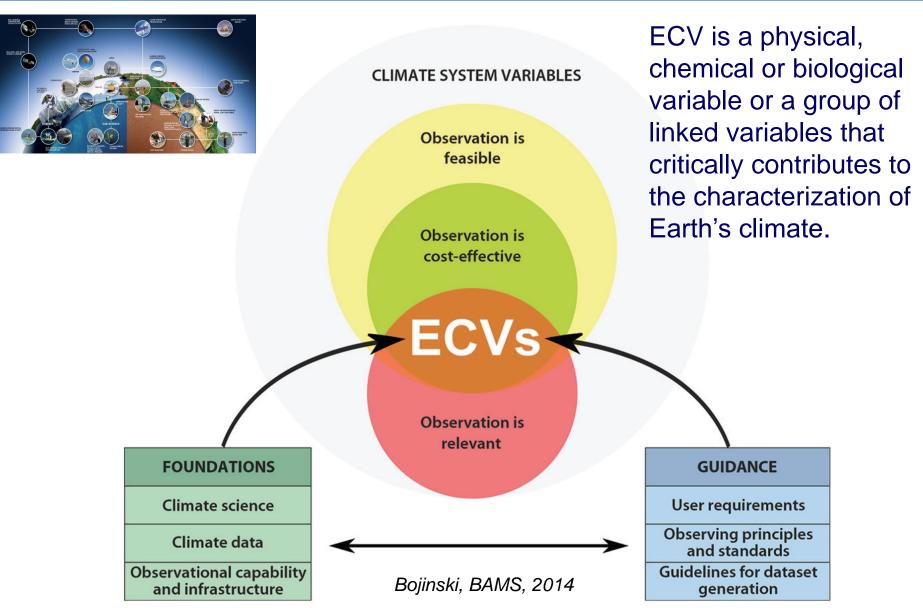
Olga Kalashnikova (AOPC member),

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA



World Meteorological **Organization**


Weather • Climate • Water



Ensure that the observations needed to address climate-related issues are obtained and made available to all potential users

Structure

Essential Climate Variables

Atmospheric Composition ECVs

<u>Aerosols properties</u>: aerosol optical depth; single-scattering albedo; layer height; extinction profiles for the troposphere and the lower to middle stratosphere (<u>GCOS IP Annex A</u>);

Carbon Dioxide, Methane and other Greenhouse gases: Tropospheric CO₂ column; Tropospheric CO₂; Tropospheric CH₄ column; Tropospheric CH₄; Stratospheric CH₄

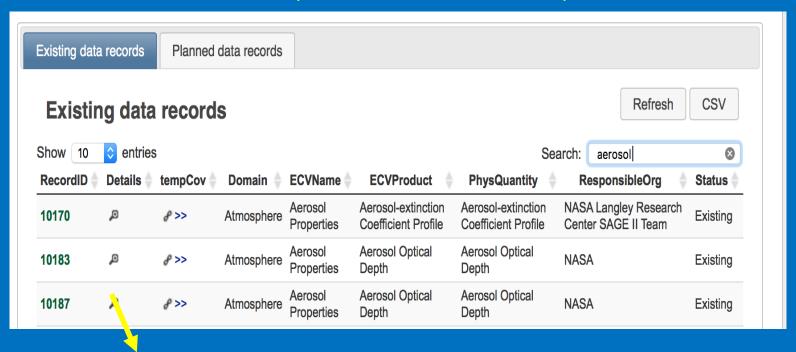
Ozone: Total column ozone; troposphere Ozone; Ozone profile in upper and lower stratosphere; Ozone profile in upper strato-and mesosphere

Precursors (supporting the Aerosol and Ozone ECVs): NO₂ tropospheric column; SO₂,HCHO tropospheric columns; CO tropospheric profile

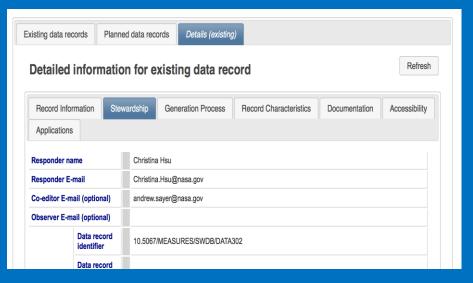
Aerosols properties	Aerosol optical depth	4hr	5-10km/NA/	Max(0.03;10%);	0.02/decade
properties					
	Single-scattering albedo	4hr	5-10km/NA/	0.03;	0.01
	Aerosol-layer height	4hr	5-10km/NA/	1km;	0.5km
	Aerosol-extinction coeff. profile	weekly	200-500 km/	10%,	20%
			1km(near		
			tropopause),		
			2km(mid		
			stratosphere)/		

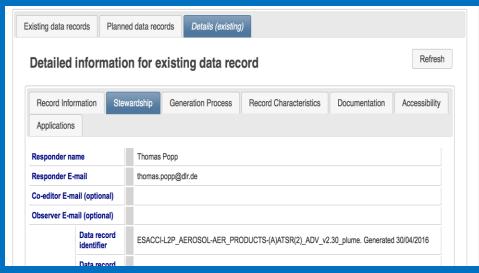
Considered updates in ECVs

ECV product as in GCOS IP Annex A	revised ECV product	OSCAR Variables	Comments from AOPC
Aerosol optical depth	Aerosol optical depth	Aerosol Optical Depth	Recommendation to change definition in OSCAR
Aerosol single- scattering albedo	Aerosol single-scattering albedo	(no corresponding variable in OSCAR)	New product. Add to OSCAR
Aerosol layer height	Aerosol layer height	(no corresponding variable in OSCAR)	New product. Add to OSCAR
Aerosol Extinction coefficient profile	Aerosol Extinction	Aerosol Extinction Coefficient	Change name to Aerosol Extinction, Recommendation to change definition in OSCAR
	Aerosol size distribution	(no corresponding variable in OSCAR)	New product. Add to OSCAR
	Aerosol Composition	(no corresponding variable in OSCAR)	New product. Add to OSCAR
	Aerosol Refractive index	(no corresponding variable in OSCAR)	New product. Add to OSCAR


Essential Climate Variable (ECV) Climate Data Record (CDR) inventory

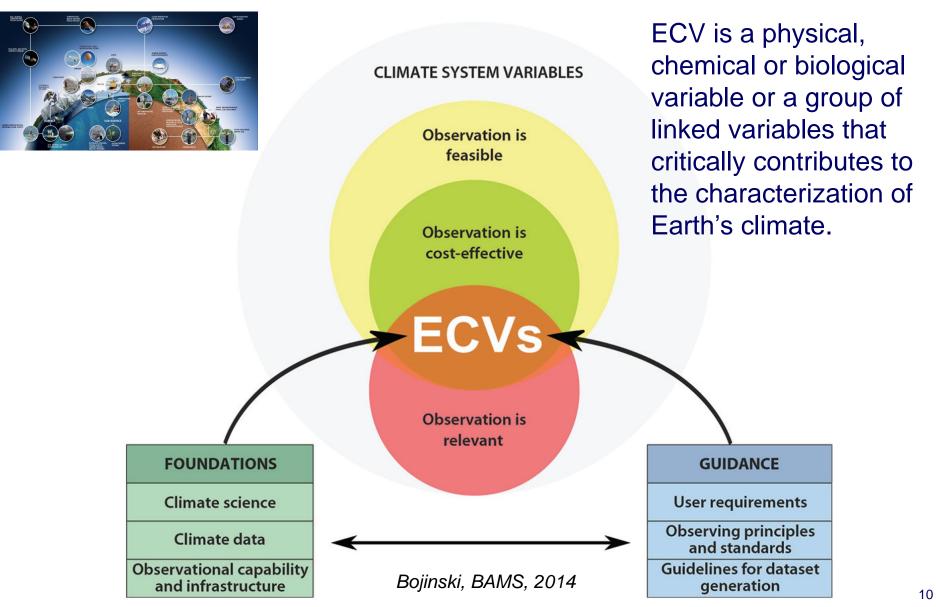
- An Essential Climate Variable is a geophysical variable that is associated with climate variation and change.
- GCOS has defined a set of ECVs for three domains: atmospheric, terrestrial, and oceanic.
- The joint COES/CGMS Working Group on Climate was tasked to provide a structured, comprehensive and accessible view of the CDRs that are currently available and planned to become available from existing and committed satellite missions of CEOS and CGMS agencies.
- The current inventory has 900+ CDRs, and 44 aerosol related CDRs.
- The inventory is available at:
 http://climatemonitoring.info/ecvinventory/, and will be open for new inputs in November 2018, please consider to contribute.
- For questions related to the inventory please contact:
 ecv_inventory@eumetsat.int
- For questions related to NASA CDR contributions to this inventory please contact: <u>Wenying.Su-1@nasa.gov</u>




A Snapshot of the inventory

Deep Blue from Christina Hsu/Andrew Sayer

CCI from Thomas Popp



Thank you!

Olga.Kalashnikova@jpl.nasa.gov

Wenying.Su-1@nasa.gov

Essential Climate Variables

AOPC members (2018)

- Dr Kenneth Holmlund, AOPC Chairman, Head Remote Sensing and Products Division, EUMETSAT, Germany
- Prof. Philip Jones, AOPC Deputy Chair, University of East Anglia, UK
- Dr Dale Hurst, CIRES at NOAA, US
- Dr Elizabeth KENT, National Oceanography Centre, UK
- Dr. Imke Durre, NOAA's NCEI
- Dr. Olga Kalashnikova, JPL, US
- Dr. Peng Zhang, Deputy Director-General, National Satellite Meteorological Center, China
- Prof. Peter Thorne, Co-Chair GRUAN, National University of Ireland, Ireland
- Dr Rainer Hollmann, Deutscher Wetterdienst
 Satellite Application Facility on Climate Monitoring, Germany
- Dr. Shinya Kobayashi, Climate Prediction Division, Japan
- Dr Zhanqing LI, University of Maryland, US

AOPC actions:

- Monitoring of aerosol properties (A39) e.g Provide more accurate measurement-based estimates of global and regional direct aerosol radiative forcing (DARF) at TOA and its uncertainties through accurate monitoring of the 3D distribution of aerosols and aerosol properties.
- Fundamental Climate Data Records and Climate Data Records for greenhouse gases and aerosols ECVs e.g. (A32) Extend and refine the satellite data records (FCDRs and CDRs) for GHG and aerosol ECVs
- Validation of satellite remote sensing, e.g. (A31) Engage
 existing networks of ground-based, remote sensing to ensure
 adequate, sustained delivery of data from ground-based
 instruments for validating satellite remote-sensing of the
 atmosphere.

OSCAR (Observing Systems Capability Analysis and Review Tool)

- OSCAR is a resource developed by WMO in support of Earth Observation applications, studies and global coordination.
- OSCAR contains quantitative user-defined requirements for observation of physical variables in application areas of WMO (i.e. related to weather, water and climate).
- OSCAR provides detailed information on all earth observation satellites and instruments, and expert analyses of spacebased capabilities.

AOPC overview

- Was established by the GCOS Steering Committee in 1995 in recognition of the need for specific scientific and technical input
- Supported, amongst others, by the WMO Integrated Global Observing System (WIGOS)
- Plans, monitors and promotes the atmospheric component of GCOS:
 - to maintain and review the list of GCOS Atmospheric Essential Climate Variables (ECV);
 - to liaise with relevant stakeholder bodies in order to determine and maintain the requirements for atmospheric datasets
 - to advocate for the establishment, re-establishment and maintenance of integrated systems to provide long-term, high-quality, consistent data
 - to propose and promote the establishment of new systems, or enhancements to current systems and practices, to address deficiencies;
 - to review the current state and identify gaps and inadequacies of the atmospheric component of the global observing system;
 - to promote the rehabilitation of relevant historical data sets;