Discussion about aerosol type in Helsinki at Aerocom 2017

Discussion about aerosol type in Helsinki at Aerocom 2017

Ralph: We can give modelers the aerosol types that we infer from satellite retrievals.

Mian: We don't need that, but we can give you our aerosol species for your retrievals.

Ralph: We don't need that, but we can give you aerosol type.

Mian: We don't need that, but we can give you our aerosol species.

Ralph: Maybe we need to think about this a bit more.

Remote sensing begins with radiance measurements

Measurements (radiances)

Forward model:

Somehow iterate size and refr index

Compute radiances:

• Save microphysics that provide "best fit" to measured radiances.

Output Aerosol Optical Properties

- Aerosol Optical Depth
- Angstrom Exponent or Fine Fraction
- Absorption AOD (and/or SSA)
- Absorption Angstrom Exponent

?

Compare

Aerosol Type

- Background / Clean Continental (low extinction)
- Marine (High AE with little absorption)
- Urban / Pollution (High AE, absorption)
- Biomass burn (high AE, AAE, absorption)
- Dust (low AE or low FMF; high linear depol)
- Non-quantitative Combinations (polluted dust, etc.)

Modeling begins with emissions inventories

Emissions (mass)

 e.g., sulfate, dust, black carbon (BC), organic matter (OM), sea salt

Transport

• Winds, wet and dry deposition, etc.

Assign particle microphysics

- Assume species-dependent size distributions
- RH => Species-dependent aerosol hydration

Compute Aerosol Optical Properties

- Aerosol Optical Depth
- Angstrom Exponent or Fine Fraction
- Absorption AOD (and/or SSA)
- Absorption Angstrom Exponent

Optics are linked to emissions

Linked to radiances

Aerosol Type

- Background / Clean Continental (low extinction)
 - Sparse numbers of tiny particles
- Marine (High AE with little absorption)
 - Hygroscopic salt
 - Insolubles?
 - Water
- Urban / Pollution (High AE, absorption)
 - Hygroscopic salts (sulfate, nitrate, etc.)
 - Black Carbon
 - Water-soluble OC (non-absorbing)
 - Water-insoluble OC (non-absorbing)
 - Water
- Biomass burn (high AE, AAE, absorption)
 - Black Carbon
 - Water-soluble OC (non-absorbing and absorbing)
 - Water-insoluble OC (non-absorbing and absorbing)
 - Water
- Dust (low AE or low FMF; high linear depol)
 - Clays and Silts
 - Iron oxide (hematite and goethite)
 - Water?
- Non-quantitative Combinations (polluted dust, etc.)
 - Water

Component	Fine Mode	Coarse Mode
solubles	salts and WSOC	sea salt
insolubles	clays and WIOC	clays and silts
Absorbers	BC, BrC, Free iron	Free iron
water	yes	?

AERONET

- Bond 2013
- Schuster, ACP 2016

Parasol

- L. Li, U. Lille PhD, 2018,
- Chen, ACP, 2018

Remote sensing begins with radiance measurements

Measurements (radiances)

Insert? Forward model:

• Iterate size and refractive index

Compute radiances:

• Save microphysics that provide "best fit" to measured radiances.

Output Aerosol Optical Properties

Aerosol Optical Depth

Aerosol Type

- Angstrom Exponent or Fine Fraction
- Absorption AOD (and/or SSA)
- Absorption Angstrom Exponent

Modeling begins with emissions inventories

Emissions (mass)

• e.g., sulfate, dust, black carbon (BC), organic matter (OM), sea salt

Transport

• Winds, wet and dry deposition, etc.

Assign particle microphysics

- Assume species-dependent size distributions
- RH => Species-dependent aerosol hydration

Compute Aerosol Optical Properties

- Aerosol Optical Depth
- Angstrom Exponent or Fine Fraction
- Absorption AOD (and/or SSA)

Compare

protion Angstrom Exponent **Compare proportions**

component ptics

Optics a

 $AAOD_i \neq AAOD$

Component	Fine Mode	Coa	Compare
solubles	salts and WSOC	S	op
insolubles	clays and WIOC	clays	s and silts
Absorbers	BC, BrC, Free iron	Fr	ee iron
water	yes		?

Linked to radiand

Aerosol Type

- Background / Clean Continental (low extinction)
 - Sparse numbers of tiny particles
- Marine (High AE with little absorption)
 - Hygroscopic salt
 - Water
- Urban / Pollution (High AE, absorption)
 - Hygroscopic salts (sulfate, nitrate, etc.)
 - Black Carbon
 - Water-soluble OC (non-absorbing)
 - Water-insoluble OC (non-absorbing)
 - Water
- Biomass burn (high AE, AAE, absorption)
 - Black Carbon
 - Water-soluble OC (non-absorbing and absorbing)
 - Water-insoluble OC (non-absorbing and absorbing)
 - Water
- Dust (low AE or low FMF; high linear depol)
 - Clays and Silts
 - Iron oxide (hematite and goethite)
 - Water?
- Non-quantitative Combinations (polluted dust, etc.)
 - Water

Component	Fine Mode	Coarse Mode	
Absorbers	BC, BrC, Free iron	Free iron	
solubles	salts and WSOC	sea salt	
insolubles	clays and WIOC	clays and silts	
water	yes	?	

Discussion

- How to link aerosol type definitions in models and retrievals?
- How to best use satellite constraints?
- What to use as "ground truth" (or, how to assess uncertainty and then validate?)
- How can in situ help?
 parameterizations... gHGF or f(RH)?
- Should we use model emissions to aid retrievals?

AERONET

- Bond 2013
- Schuster, ACP 2016

Parasol

- •L. Li, U. Lille PhD, 2018,
- Chen, ACP, 2018