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Sampled/dry aerosol CCN proxies 
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• AOD/AI as CCN proxies overestimate CCN 
due to water uptake near clouds 

• Dry aerosol (model) and excluding near 
cloud aerosol (satellite) give better CCN 
proxies 

• Large impact on radiative forcing 

✖ ✔ 
Christensen et al. (2017) ACP 

Neubauer et al. (2017) ACP 

✖ ✖ ✔ ✔ 

✖ ✔ 

Presenter
Presentation Notes
-AOD (aerosol optical depth) and AI (aerosol index) increase near clouds in satellite observations, not only due to cloud contamination or 3D radiative effects but also due to aerosol water uptake in the humid environment near clouds (aerosol swelling)
-light scattering increases non-linear with increasing relative humidity; e.g. Poster of Elisabeth Andrews or talk by Maria Burgos
-using AOD or AI as CCN (cloud condensation nuclei) proxies leads therefore to an overestimation of CCN
-in satellite retrievals the near cloud aerosol (e.g. up to 15 km from clouds) can be exluded e.g. with the CAPA  (Cloud-Aerosol Pairing Algorithm) retrieval algorithm (Christensen et al., 2017, ACP) to obtain a better CCN proxy
-in GCM (global climate model) simulation a different approach is necessary as the horizontal resolution is coarser (~100km) than in satellite retrievals; since the water uptake in GCMs is known, the dry aerosol can be used as a CCN proxy instead (Neubauer et al., 2017, ACP)
-both CCN proxies, excluding near clouds aerosol/dry aerosol, lead to weaker indirect aerosol radiative forcing (ERFaci (effective radiative forcing due to aerosol-cloud interactions))
-in ECHAM-HAM ERFaci can be diagnosed as the difference in TOA net flux between simulations with present-day and pre-industrial aerosol concentrations; this serves as a reference aerosol forcing for the model; the estimated aerosol forcing using dry aerosol as a CCN proxy agrees with this reference forcing




Inferring CCN Concentrations from Remote Sensing  

Fine mode 
volume conc. 

Müller et al., 2014, AMT; Sawamura et al., 2017, ACP 

• Stier (ACP, 2016) examined used global model to examine relationships between CCN and 
aerosol radiative properties 

• Poor correlation between CCN and column retrievals of AOD, fine mode AOD, and Aerosol Index 
• Constraints from passive sensors are particularly limited in key areas of aerosol-cloud radiative forcing 
• Correlations of CCN with local aerosol extinction significantly exceed correlations with column AOD  
• Satellite-based HSRL has large potential for global monitoring of CCN  

• Lidar profiles provide a means to remotely infer CCN locally (i.e. at the altitude of clouds) 
• Backscatter lidar (basic) – provides attenuated backscatter and an estimate of aerosol 

extinction at cloud altitude  
• HSRL (better) – provides calibrated backscatter and accurate extinction at cloud altitude 
 Multiwavelength HSRL (best) – provides: 

– Calibrated backscatter and accurate extinction 
at cloud altitude 

– Aerosol Index at cloud altitude 
– Retrievals of aerosol concentration at cloud 

altitude 
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CCN(S) retrieval for marine stratocumulus 
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 = Cloud Optical Thickness (Depth) 
  re = Effective radius 

Wb = 0.44 × CTRC + 22.3 (cm/s) 
 
Wb  =cloud-base updrafts 
CTRC = cloud top radiative cooling 

Smax = C(T,P)Wb
3/4Nd

-1/2 
 
Smax = cloud-base maximum supersaturation 

 
 
 
 
 



CCN retrieval for convective clouds 
1. Retrieve Nd based on T-re 
2. Wb= 0.9Hb (Wb=cloud base updraft) 

3. Smax = C(T,P)Wb
3/4Nd

-1/2 
(Hb=cloud base height) 
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