

Reflections on Model and Satellite Integration

Peter Colarco NASA GSFC, Code 614 Atmospheric Chemistry and Dynamics Laboratory

AeroCom/AeroSat, October 18, 2018

Schulz et al., *ACP*, 2006

…and process-level uncertainties (lifetimes, MEE, …) remain large (still) so that we have residual uncertainty

in forcing.

Loeb and Su, *J. Clim.,* 2010

FIG. 1. DARF uncertainty associated with different aerosol parameters for (a) clear- and (b) all-sky conditions. The dashed line corresponds to the DARF uncertainty in Solomon et al. $(2007).$

Peter Colarco, AeroCom/AeroSat, October 18, 2018

Randles et al., *J. Clim.,* 2017

MERRA-2 Global, Monthly Mean Aerosol Optical Depth (AOD)

Two realizations of the global mean AOD $0.4\Box$

Global, Monthly Mean 550 nm AOD

- same model
- same meteorology (MERRA-2)
- same resolution (~50 km)
- same aerosol module* (GOCART)
- same emissions
- same optical properties
- aerosol data assimilation
- •**no** aerosol data assimilation

* MERRA-2 GMI includes full GMI chemistry (coupled oxidants) and new nitrate module

Different applications…

 0.3

 0.2

 0.1

 0.0

TOA

ICAP: International Cooperative for Aerosol Prediction

• Complementary community to AeroCom/AeroSat, but focused on nearreal time prediction issues

•ICAP Multi-Model Ensemble

Xian et al., *QJRMS, 2018*

nts lite, ata roach eet es. and ١g l and ysical as tration erties ry albedc ork ve F_d and mn (2) $P_{\sf a, \sf pol}(\theta)$ s: Top), q(z) gth, ation

This is probably where I'm supposed to say those 5 things that modelers want…

…but of course we want it all.

Forecasting and data assimilation:

- high frequency, low latency, coverage
- well characterized errors

Reanalysis and climate:

- consistent, harmonized records
- •long time series

These are framed in terms of needed constraints on models or else as "coverage" constraints where models have difficulty

Themes Sources, **Processes Transport, Sinks (SPTS)**

Direct Aerosol Radiative Forcing (DARF)

Cloud-**Aerosol Interaction** (CAI)

ACE 2011-2015 Progress Report and Future Outlook (2016)

Models and retrievals are not (never will?) converge on what they mean by, e.g., aerosol type

This presents a fundamental challenge in using the two together (you all know this)

Another approach is direct observation simulation

Instrument simulation as a means to harmonize models and observations

■Level 1

- ■Detailed radiative transfer calculation in the presence of clouds, aerosols, ice, etc.
- ■Instrument characteristics
- ■Observables: polarized radiances, backscatter
- ■Level 2
- ■Retrieved quantities at observation location
- ■Averaging kernels, error characteristics
- ■Level 3
- ■Hourly to seasonal mean statistics sampled at the instrument footprint

■Level 4

EXPOT DECESSARILY At the model footprint

- From MERRA-2 aerosol fields we simulate the OMI observed TOA radiances (354 and 388 nm) using VLIDORT
- Comparison of the simulated and observed UV aerosol index provides complementary information to comparison of simulated and retrieved AAOD
- Result is improved confidence in simulated aerosol absorption, as well as refinement of assumed input aerosol optical properties (dust, organic carbon)

Buchard et al., *ACP*, 2015; Buchard et al., *J. Clim.,* 2017

Simulate OMI radiances directly as means to evaluate and improve model

a) MERRAero Aerosol Index (20070605)

b) Surface Pressure Difference [hPa]: OMAERUV - MERRAero

c) Al Difference: OMAERUV (own pressure) - MERRAero

d) Al Difference: OMAERUV (MERRAero pressure) - MERRAero

- Use reanalysis aerosol and atmosphere fields to simulate the OMI radiances and aerosol index
- Give the simulated radiances to the OMAERUV algorithms and have them retrieve aerosol index (and possibly other aerosol quantities…)
- Comparison of AI from OMAERUV algorithms to AI from direct simulation shows where assumptions of satellite algorithms come into play
- Surface pressure assumptions
- Interpolation of radiative transfer results

Colarco et al., *AMT*, 2017

Observation Simulation to Interrogate Algorithms

Observation Simulation to Interrogate Algorithms

• Systematic error introduced to standard OMI aerosol products because of assumption of fixed (time invariant) surface pressure (pressure profile affects

a) Histogram of AI and Surface Pressure Differences - MERRAero Al Difference
OMAERUV (own pressure) -200 -100 100 200 Ω Surface Pressure Difference [hPa] (OMAERUV - MERRAero) 500 1000 2000 5000 10000 20000 50000 Colarco et al., *AMT*, 2017 Frequency

- molecular scattering profile needed for radiative transfer calculations)
- Forcing OMI algorithms to use consistent pressure profile with actual meteorology corrects this error
- Most of remaining residual is attributable to OMAERUV interpolation of pre-computed radiative transfer calculations (use more nodes in interpolation)

З.

.З

Observation Simulation to Interrogate Algorithms

- From MERRAero aerosol fields we simulate the CALIOP 532 nm attenuated backscatter and depolarization ratio
- Simulation of depolarization ratio is possible through inclusion of non-spherical dust optical properties (other species in development)
- Level 2 CALIOP simulator: by simulating the observables we can feed these as inputs to CALIOP VFM algorithm and evaluate aerosol typing
- Level 3 CALIOP simulator: a complementary typing analysis can be performed by using aerosol speciation from MERRAero

Nowottnick et al., *AMT*, 2015

Observation Simulation to Interrogate Algorithms

- From MERRAero aerosol fields we simulate the CALIOP 532 nm attenuated backscatter and depolarization ratio
- Simulation of depolarization ratio is possible through inclusion of non-spherical dust optical properties (other species in development)
- Level 2 CALIOP simulator: by simulating the observables we can feed these as inputs to CALIOP VFM algorithm and evaluate aerosol typing
- Level 3 CALIOP simulator: a complementary typing analysis can be performed by using aerosol speciation from MERRAero

Summary

• Our remote sensing observational data sets provide enormous quantities of information with which to understand our problems and constrain our models, but clearly some things remain challengingly under

• Even if models can hit the target on total aerosol optical thickness, how they get there can remain a free

• Some progress on remaining issues can be made by including some component of more sophisticated

- constrained
- parameter to "fix" the model's problems (absorption, mass extinction efficiency, lifetime)
- observation simulation in your analysis
- helps put those observations in context
- Added bonus: development of these capabilities will help design the next instruments (coverage, channels, …)

• Objective is *not to replace traditional retrieval products*, but the approach outlined is complementary and

