

Reflections on Model and Satellite Integration

Peter Colarco NASA GSFC, Code 614 **Atmospheric Chemistry and Dynamics Laboratory**

AeroCom/AeroSat, October 18, 2018

in forcing.

Schulz et al., ACP, 2006

...and process-level uncertainties (lifetimes, MEE, ...) remain large (still) so that we have residual uncertainty

FIG. 1. DARF uncertainty associated with different aerosol parameters for (a) clear- and (b) all-sky conditions. The dashed line corresponds to the DARF uncertainty in Solomon et al. (2007).

Loeb and Su, J. Clim., 2010

Randles et al., J. Clim., 2017

1997	2001	2005	2009	2013

Two realizations of the global mean AOD 0.4 🗆 Global, Monthly Mean 550 nm AOD • same model 0.3 • same meteorology (MERRA-2) same resolution (~50 km) same aerosol module* (GOCART) AOT 0.2 same emissions same optical properties 0.1 aerosol data assimilation **MERRA-2** • no aerosol data assimilation * MERRA-2 GMI includes full GMI chemistry (coupled oxidants) and new nitrate module 0.0

Different applications...

ICAP: International Cooperative for Aerosol Prediction

 Complementary community to AeroCom/AeroSat, but focused on nearreal time prediction issues

• ICAP Multi-Model Ensemble

Xian et al., QJRMS, 2018

This is probably where I'm supposed to say those 5 things that modelers want...

...but of course we want it all.

Forecasting and data assimilation:

- high frequency, low latency, coverage
- well characterized errors

Reanalysis and climate:

- consistent, harmonized records
- long time series

These are framed in terms of needed constraints on models or else as "coverage" constraints where models have difficulty

Themes

Sources, Processes, Transport, Sinks (SPTS)

Direct Aerosol Radiative Forcing (DARF)

Cloud-Aerosol Interaction (CAI)

ACE 2011-2015 Progress Report and Future Outlook (2016)

		Geophysical	-	Mission
	Focused Science Questions	Parameters	Measurement Requirements	Requireme
	 Q1. What are key sources, sinks, and transport paths of airborne sulfate, organic, BC, sea salt, and mineral dust aerosol? Q2. What is the impact of specific significant aerosol events such as volcanic eruptions, wild fires, dust outbreaks, urban/industrial pollution, etc. on local, regional, and global aerosol burden? 	$\begin{array}{c c} \hline Column: & \ensuremath{\mathbb{Q1}}\ensuremath{\mathbb{Q2}}\ensuremath{\mathbb{Q3}}\ensuremath{\mathbb{Q4}}\ensuremath{\mathbb{Q1}}\ensuremath{\mathbb{Q2}}\ensuremath{\mathbb{Q3}}\ensuremath{\mathbb{Q4}}\ensuremath{\mathbb{Q4}}\ensuremath{\mathbb{Q3}}\ensuremath{\mathbb{Q4}}\ensuremath{\mathbb{Q3}}\ensuremath{\mathbb{Q4}}\ensuremath{\mathbb{Q3}}\ensuremath{\mathbb{Q4}}\ensuremath{\mathbb{Q3}}\ensuremath{\mathbb{Q4}}\ensuremath{\mathbb{Q3}}\ensuremath{\mathbb{Q4}}\ensuremath{\mathbb{Q3}}\ensuremath{\mathbb{Q4}}\ensuremath{\mathbb{Q3}}\ensuremath{\mathbb{Q4}}\ensuremath{\mathbb{Q3}}\ensuremath{\mathbb{Q4}}\ensuremath{\mathbb{Q3}}\ensuremath{\mathbb{Q4}}\ensuremath{\mathbb{Q3}}\ensuremath{\mathbb{Q4}}\ensuremath{\mathbb{Q3}}\ensuremath{\mathbb{Q4}}\ensuremath{\mathbb{Q3}}\ensuremath{\mathbb{Q4}}\ensuremath{\mathbb{Q3}}\ensuremath{\mathbb{Q4}}\ensuremath{\mathbb{Q3}}\ensuremath{\mathbb{Q4}}\ensuremath{\mathbb{Q4}}\ensuremath{\mathbb{Q3}}\ensuremath{\mathbb{Q4}}\ensuremath{\mathbb{Q4}}\ensuremath{\mathbb{Q3}}\ensuremath{\mathbb{Q4}}\ensurema$		Integrated satell modeling, and da assimilation applies is required to me science objective Expand high- resolution global regional modelin capabilities to
	 Q3. What is the direct aerosol radiative forcing (DARF) at the top-of-atmosphere, within atmosphere, and at the surface? Q4. What is the aerosol radiative heating of the atmosphere due to absorbing aerosols, and how will this heating affect cloud development and precipitation processes? 	• $\tau_{a,abs}(\lambda)$ • $m_{a}(\lambda)$ • $r_{eff a}(\lambda)$ • $\nu_{eff a}(\lambda)$ • Morphology <u>Cloud Top:</u> • $\underline{\tau}_{c}$ • $\underline{\tau}_{eff, c}$ • $\underline{\nu}_{eff, c}$ • Thermodynamic phase		assimilate cloud aerosol microphy parameters such number concent and optical prop Required ancillar data: • Land surface a map
5	 Q5. How do aerosols affect cloud micro and macro physical properties and the subsequent radiative balance at the top, within, and bottom of the atmosphere? Q6. How does the aerosol influence on clouds and precipitation via nucleation depend on cloud updraft velocity and cloud type? Q7. How much does solar absorption by anthropogenic aerosol affect cloud radiative forcing and precipitation? Q8. What are the key mechanisms by which clouds process aerosols and influence the vertical profile of aerosol physical and optical properties? 	Vertically Resolved: Q5 Q6 Q7 Q8 P1. N _a P2. $\tau_{a,abs}(\lambda)$ P3. $r_{eff,a}$ P4. N _c P5. LWC P6. Precip Cloud Top: Q5 Q6 Q7 Q8 P7. Cloud top height P8. Cloud albedo P9. LWP P10. τ_c P11. $r_{eff,c}$ P12. Cloud radiative effect Cloud Base: Q5 Q6 Q7 Q8 P13. Cloud base height P14. Updraft velocity		 Ground netwo τ_a(λ), shortway and longwave F_{net} Ground and airborne: colur and vertically resolved τ_a(λ), τ_{a,abs}(λ), m_a(λ) modes), morphology, P Space measurements of atmosphere shortwave and longwave F_u, collocated T(z) V(z), fire streng frequency, local

nts lite, ata roach eet es. and ۱g and ysical as tration erties ry albedo ork ve F_d and mn (2 P_{a,pol}(θ s: Top), q(z) gth, ation

Instrument simulation as a means to harmonize models and observations

Models and retrievals are not (never will?) converge on what they mean by, e.g., aerosol type

This presents a fundamental challenge in using the two together (you all know this)

Another approach is direct observation simulation

Level 1

- Detailed radiative transfer calculation in the presence of clouds, aerosols, ice, etc.
- Instrument characteristics
- Observables: polarized radiances, backscatter
- Level 2
- Retrieved quantities at observation location
- Averaging kernels, error characteristics
- Level 3
- Hourly to seasonal mean statistics sampled at the instrument footprint

Level 4

Not necessarily at the model footprint

Peter Colarco, AeroCom/AeroSat, October 18, 2018

Simulate OMI radiances directly as means to evaluate and improve model

- From MERRA-2 aerosol fields we simulate the OMI observed TOA radiances (354 and 388 nm) using VLIDORT
- Comparison of the simulated and observed UV aerosol index provides complementary information to comparison of simulated and retrieved AAOD
- Result is improved confidence in simulated aerosol absorption, as well as refinement of assumed input aerosol optical properties (dust, organic carbon)

Buchard et al., ACP, 2015; Buchard et al., J. Clim., 2017

Observation Simulation to Interrogate Algorithms

- Use reanalysis aerosol and atmosphere fields to simulate the OMI radiances and aerosol index
- Give the simulated radiances to the OMAERUV algorithms and have them retrieve aerosol index (and possibly other aerosol quantities...)
- Comparison of AI from OMAERUV algorithms to AI from direct simulation shows where assumptions of satellite algorithms come into play
- Surface pressure assumptions
- Interpolation of radiative transfer results

Colarco et al., AMT, 2017

a) MERRAero Aerosol Index (20070605)

b) Surface Pressure Difference [hPa]: OMAERUV - MERRAero

c) AI Difference: OMAERUV (own pressure) - MERRAero

d) AI Difference: OMAERUV (MERRAero pressure) - MERRAero

a) Histogram of AI and Surface Pressure Differences - MERRAero AI Difference OMAERUV (own pressure) -200 -100 100 200 0 Surface Pressure Difference [hPa] (OMAERUV - MERRAero) 1000 2000 5000 500 10000 20000 50000 Colarco et al., AMT, 2017 Frequency

- molecular scattering profile needed for radiative transfer calculations)
- Forcing OMI algorithms to use consistent pressure profile with actual meteorology corrects this error
- Most of remaining residual is attributable to OMAERUV interpolation of pre-computed radiative transfer calculations (use more nodes in interpolation)

Observation Simulation to Interrogate Algorithms

-50 50 100 -100 0 Surface Pressure Difference [hPa]: OMAERUV - MERRAero

Systematic error introduced to standard OMI aerosol products because of assumption of fixed (time invariant) surface pressure (pressure profile affects

Observation Simulation to Interrogate Algorithms

- From MERRAero aerosol fields we simulate the CALIOP 532 nm attenuated backscatter and depolarization ratio
- Simulation of depolarization ratio is possible through inclusion of non-spherical dust optical properties (other species in development)
- Level 2 CALIOP simulator: by simulating the observables we can feed these as inputs to CALIOP VFM algorithm and evaluate aerosol typing
- Level 3 CALIOP simulator: a complementary typing analysis can be performed by using aerosol speciation from MERRAero

.3

.3

Observation Simulation to Interrogate Algorithms

- From MERRAero aerosol fields we simulate the CALIOP 532 nm attenuated backscatter and depolarization ratio
- Simulation of depolarization ratio is possible through inclusion of non-spherical dust optical properties (other species in development)
- Level 2 CALIOP simulator: by simulating the observables we can feed these as inputs to CALIOP VFM algorithm and evaluate aerosol typing
- Level 3 CALIOP simulator: a complementary typing analysis can be performed by using aerosol speciation from MERRAero

Nowottnick et al., AMT, 2015

- constrained
- parameter to "fix" the model's problems (absorption, mass extinction efficiency, lifetime)
- observation simulation in your analysis
- helps put those observations in context
- Added bonus: development of these capabilities will help design the next instruments (coverage, channels, ...)

Summary

• Our remote sensing observational data sets provide enormous quantities of information with which to understand our problems and constrain our models, but clearly some things remain challengingly under

• Even if models can hit the target on total aerosol optical thickness, how they get there can remain a free

• Some progress on remaining issues can be made by including some component of more sophisticated

• Objective is not to replace traditional retrieval products, but the approach outlined is complementary and

