

African Dust and Its Deposition into Tropical Atlantic Ocean: Satellites vs. GEOS Model

Hongbin Yu, Qian Tan, Huisheng Bian, Mian Chin, Dongchul Kim NASA Goddard Space Flight Center

Acknowledgement:

Paul Ginoux, Alexei Lyapustin, Dong Huang, Ali Omar, Dave Winker, Lorraine Remer, Robert Levy, Ralph Kahn, Olga Kalashnikova, Laurent Crepeau, Virginie Capelle, Alain Chedin

The 17th AeroCom Workshop, October 15-19, 2018

Motivation

 Dust deposition is crucial for understanding the dust impacts on ocean biogeochemical cycle and climate change.

Current Status

- Observations are scarce & over short periods, esp. in remote oceans.
- □ <u>Model simulations</u> are very uncertain:
 - Most of dust processes are highly parameterized without adequate obs. constraints, e.g., scavenging, emissions.
 - Data assimilation, being widely used to constrain aerosol loading in the atmosphere (AOD), does not constrain the dust deposition.

Objectives

□ Explore the use of satellite routine measurements to estimate:

- dust deposition (DD) into tropical Atlantic Ocean
- ➢ loss frequency (LF) of dust (i.e., how efficient dust is removed)

□ Compare satellite-based estimates with GEOS simulations to understand:

- > How large is the difference in dust deposition?
- How do processes, e.g., transport/removal vs. dust emissions, contribute to the observation-model agreement or discrepancy in the dust deposition?

GEOS Dust Simulations

□ Huisheng Bian

GOCART dust module $(0.2 \sim 20 \ \mu m)$

□ MERRA-2 meteorology

□ 1°x1° horizontal resolution

□ 72 vertical layers

Miami: OBS/GEOS = 1.71

5

2.0 3.0 5.0 10

0 1.0

Dust Deposition: Satellites vs GEOS [3]

 $MEE = 0.37 \text{ m}^2/\text{g}$

MEE = $0.37 \rightarrow 0.60 \text{ m}^2/\text{g}$

 $MEE = 0.60 \text{ m}^2/\text{g}$

In MAM, model's interannual variability is much smaller than satellites.

What We Have Learned:

The GEOS model simulations of **dust deposition** into tropical Atlantic Ocean fall within the range of those derived from CALIOP, MODIS, MISR, and IASI observations.

Next Steps:

We examine how two dust processes, i.e., (1) **transport/removal**, and (2) **emissions**, contribute to the dust deposition estimates.

To isolate the uncertainty associated with the transport/removal processes from that of dust emissions:

Loss Frequency (LF) [1/day] = [Dust Deposition Rate] [g/m²/day] ÷ [Dust Mass Loading=DOD/MEE] [g/m²]

less sensitive to assumed dust MEE (more accurate than dust deposition)

Compared to dust deposition, the loss frequency shows much larger satellite-model difference, with the model substantially overestimating the removal efficiency of the dust.

Dust Loss Frequency: Satellites vs Model [2]

Pronounced differences between the satellites and GEOS model:
➢ GEOS model > Satellites
➢ much larger in winter & fall than in

spring & summer

Possible model deficiencies

- > Rainfall may be too intense
- > Altitude of dust layer may be too low
- Scavenging coefficient may be too high
- Settling and dry deposition may be too fast

Model's dust extinction profiles show reasonably good agreement with CALIOP observations [EQ-12N] CALIOP **GEOS-5**

ASL)

(km,

ASL)

(km,

(TSF)

é

ß.

ASL)

(km,

Altitude

0

80W

20E

20E

20E

20E

100 200 400

0E

0E

Longitude (c) JJA 12N-24N 80W 60W 40W 20W 20E Longitude

40W 20W 0E 20E Longitude

(b) MAM 12N-24N

60W 40W 20W 0E

Longitude

(d) SON 12N-24N

13

0E

20E

20E

1 2 5 10 20 30 40 60 100 200 400 0

How Well Does GEOS Represent Dust Emissions? [1]

- Does the model capture major dust sources?
- Are magnitudes of dust emissions biased high or low?

North Africa & Middle East

Dust Deposition Rate (mg m⁻² d⁻¹) GEOS-5 Annual

Over land, the comparison against surface dust deposition measurements appears to indicate a substantial underestimate of dust emissions.

How Well Does GEOS Represent Dust Emissions? [2]

The model is mass-based.
 DOD = [Mass Loading] * MEE
 It is necessary to understand potential bias in MEE.

How Well Does GEOS Represent Dust Emissions? [3]

SEVIRI Dust Source Activation (DSA)

Satellite-identified dust source regions

Large discrepancies in dust source areas are believed to be related to the temporal resolution of satellite measurements (*Schepanski et al., 2009, 2012*) DSCOVR/EPIC MAIAC product (Alexei Lyapustin)

- Deep Space Climate ObserVatoRy (L1, one million miles away)
- Earth Polychromatic Imaging Camera
- Sunrise-to-sunset, 1-2 hourly frequency, ~10km pixel resolution
- MAIAC atmos. Corr. Product (including AOD)

Conclusions

- A 10-year climatology of dust deposition into tropical Atlantic ocean was developed from CALIOP, MODIS, MISR, and IASI measurements (seasonal, 5°x2° resolution).
- The GEOS modeling of dust deposition *falls within the range* of satellite-based estimates.
- However, the reasonable agreement in the dust deposition is a *compensation* of the model's:
 - underestimate of dust emissions, and
 - *overestimate of dust removal efficiency* (i.e., higher dust loss frequency, which is due largely to the model's *overestimate of rainfall rate*).

How Well Does GEOS Represent Dust Emissions? [2]

Does GEOS model underestimate dust concentration?

Miami: OBS/GEOS = 1.71

Barbados: OBS/GEOS = 1.18

GEOS-5: underestimating coarse particles, but overestimating fine particles

Size distribution (SAL)

GEOS-5 substantially overestimates the fraction of dust < 6 μm, but underestimates the fraction of very coarse particles (> 6 μm) :

- higher dust MEE affecting model-satellite comparisons/assimilation
- Ionger transport of dust, <u>IF</u> dust removals are accurately done. But we just showed that the dust loss frequency is much larger than satellites need to improve dust removal schemes.

Reducing Convective Scavenging Efficiency Improves GEOS & AToM Agreement

Figures from Huisheng Bian

Satellites Capabilities of Observing Global Dust

Sensor	Technique	Observables
CALIOP CATS	polarization lidar	Vert. profiles & particle shape
MODIS	multiple wavelengths	AOD & particle size
MISR	multi-angle, multi-wavelengths	AOD & particle shape
IASI AIRS	thermal IR	AOD at 10 um & height info
POLDER	multi-angle, multiple wavelengths, polarization	AOD & particle shape/size

- Dust, generally large & non-spherical particles, can be separated from other types based on measurements of particle size & shape.
- A synergy of passive & active measurements can characterize dust in 3-D.