The Cloud-Aerosol Transport System (CATS):
33 Months of Aerosol Vertical Profiles from the ISS

CATS TEAM:
Matt McGill — PI (NASA GSFC)
John Yorks — Science Lead (NASA GSFC)

NASA GSFC Team - Ed Nowottnick, Stephen Palm,
Dennis Hlavka, Patrick Selmer, Rebecca Pauly, Scott Ozog

NASA LaRC Team — Chip Trepte, Mark Vaughan, Sharon
Rodier




e CATS was designed as a tech demo (6 month lifetime) utilizing ISS as
an affordable Earth Science platform to:

e Complement CALIPSO data record w/ diurnally varying cloud/aerosol vertical profiles
e Monitor dynamic events such as wildfires and volcanic eruptions

e Provide in-space demonstration of technologies for future satellite missions

e Demonstrate build-to-cost project development

e CATS operated on the ISS for 33 months and fired 200+ billion laser
shots

CATS Detects Wildfires on 18 Aug. 2015

Smoke Plume
at Source

Transported

Altitude exaggerated 20x
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CATS demonstrated new
technologies in space:

— Multiple beams separated by
7 km at surface (1.5 months

of data)

— First space-based
measurements of

depolarization at 1064 nm (&

2 wavelengths)

Early bumps in the road:

— Laser 1 failed 3/2015

— Laser 2 cannot be stabilized
for HSRL retrievals (Mode 2)

Mode 7.2 1064 nm data

was very reliable

— Suspected power/data
system failure on 30 Oct.
2017 ended science
operations

seration Modes

Mode 7.1: Multi-Beam

Backscatter: 532, 1064 nm
Depolarization: 532, 1064 nm
L2 Products: 532, 1064 nm

Mode 7.2: Laser 2

Backscatter: 532, 1064 nm
Depolarization: 1064 nm
L2 Products: 1064 nm
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Semi-continuous operation:
Feb. 10 — Mar. 21 (2015)

Semi-continuous operation:
25 Mar. 2015 - 30 Oct. 2017
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Data Products

e CATS team worked with CALIPSO team to incorporate lessons learned and make
products/browse images similar for lidar user community

e The final version of CATS “Operational” data products to be released in coming
months
e L1B Version 3.00 includes more accurate daytime backscatter calibration

e L20 Version 3.00 includes improved cloud-aerosol discrimination (especially at daytime) using
horizontal persistence tests and other tests, and updates to optical properties (AOD/COD,
extinction, lidar ratio) algorithm

e Most accurate products yet and easy for CALIPSO data users to work with
e New “Heritage” data products soon - CATS data run through CALIPSO algorithms

(" Level 1 Data: ) ( Level 2 Data: A
. (alibrated Backscatter = 60 m vert. resolution + (loud & Aerosol identification « 60 m vert. resolution
» Depolarization Ratio + 350 m hor. resolution - Extinction profiles « 5 km hor. resolution
- Layer optical thickness
CATS 1064 nm Attenuated Total Backscatter: 13 August 2015 CATS Vertical Feature Mask: 13 August 2015

Fore FOV, Resolution: 60 m (vertical), 5 km (horizontal)

Fore FOV, Resolution: 60 m (vertical), 350 m (horizontal)
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Calibration

The CATS 1064 nm signal is calibrated by directly normalizing to the Rayleigh profile assuming an
aerosol loading (22-26 km) based on CALIPSO 532 nm data. Comparisons with the EARLINET 1064 nm
PollyXT Raman lidars suggest CATS nighttime data is well calibrated (below).

The 1064 nm CALIOP data is calibrated using 1064-532 cirrus color ratio assumptions. Initial
comparisons with CATS 1064 nm data show the 2 different calibration techniques converging to the
same answer (not shown).
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LIOP Differences

1. ORBIT: ISS 51° inclination orbit at ~“415 km enables CATS measurements at
different local time every overpass with variable coverage of the tropics and
mid-latitudes

e  CALIPSO only measures local ~1:30 AM/PM overpass times

2. TECHNIQUE: Implications for sampling complex scenes and daytime SNR
e CATS is high rep. rate, low energy, photon counting detection
e CALIOP is low rep rate, high energy, analog detection
3. PREFERRED WAVELENGTHS: The two instruments use different wavelengths

for depolarization and layer detection
e CATS 1064 signal is very robust and sensitive to subvisual layers, but Mode 7.2 532 nm data
is very noisy (see below). CATS does depolarization at 1064 nm (M7.1 -> both wavelengths)
e CALIOP 532 nm signal is stronger than 1064 nm signal, 532 nm depolarization

.. CATS 1064 nm Attenuated Total Backscatter: 27 April 2015 .. CATS 532 nm Attenuated Total Backscatter: 27 April 2015

B 00:52 - 01:05 % 00: :05
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S Aerosol Typing

CATS aerosol typing algorithm for M7.2 has heritage from CALIOP, but differences are:

1. LAYER DETECTION: CATS uses 1064 nm and 5, 60 km horizontal averaging. CALIOP uses 532 nm and
333 m — 80 km horizontal averaging. More differences in daytime data than night.

2. NUMBER OF WAVELENGTHS: CALIOP algorithms employ backscatter color ratio for cloud-aerosol
discrimination. CATS is essentially a single wavelength system in Mode 7.2, but uses horizontal
persistence and other tests to differentiate aerosols and clouds.

3. AEROSOL TYPE: CATS & CALIOP have different categories, like CALIOP’s Polluted Continental &
Smoke (PBL) vs. Elevated Smoke, while CATS has one type “Smoke” for elevated and PBL smoke.

Most Frequent Aerosol Type: July, August, September 2015-2017
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1064 nm Lidar Ratios

e Retrieve 1064 nm lidar ratios for ACA (dust and smoke) utilizing the method
outlined in Hu et al. 2007

— Optical depth of a transparent layer above an opaque water cloud can be determined.

— The attenuated total backscatter of the water cloud is decreased by an amount equal to the
2-way transmittance of the transparent layer.

1 , 1-6\? Water cloud multiple scattering
L 1446 factor (Hu et al. 2007)
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4 nm Lidar Ratios

CATS Dust Lidar Ratio CATS Dust Lidar Ratios
JJAS 2015-2017
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S Speciated AOD

e CATS provides speciated AOD and total AOD despite being single
wavelength.

e 1064 nm dust and elevated smoke AODs in good agreement with
CALIPSO.

CATS 1064 nm AOD

Dust : July-Sept. 2015 (Night) Smoke: July-Sept. 2015 (Night)
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CATS data products are well suited
for above cloud aerosols (ACA)

CATS L20 product uses 1064 nm
attenuated scattering ratio for layer
detection (given results above) and
separates clouds embedded in aerosol
layers, enabling it to detect full extent

CATS 1064 nm Attenuated Total Backscatter CALIPSO 532 nm Attenuated Total Backscatter

of aerosol plume above clouds oS husust 200G 0247 e DoAugureilENIe i
The 532 nm backscatter CALIPSO : I
uses for layer detection works well o 1L | = imog
overall, but for ACA it attenuates 06 ugust 2016 037 UTC “‘.,L,'-.":.?;Lii‘iﬁ':‘.;?.i‘;;"u‘#i"‘
before reaching aerosol layer base, . ' Em
causing separation between g “!'m -
aerosols and clouds. ) s S T i;ﬁ:
Rajapakshe et al. [GRL, 2017] pH I _lf’z-gg 12-23 o1 3% Lon
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Cloud Aerosols

Above cloud aerosols (ACA) are common in the SE Atlantic during JJASO due to transport

of smoke from biomass burning

According to CATS 60% of ACA cases in the SE Atlantic have an aerosol base to cloud top

distance smaller than 250 m

e  Much higher than CALIPSO: 11% (night) and 4% (day)

(a) CALIPSO CF [%] (Day) (b) CALIPSO CF [%] (Night) (c) CATS CF [%] (Night)
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This implies that aerosol indirect
effects (microphysical) could be an
important mechanism for SE Atlantic
radiation budget.
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CATS observed several cases of long-range smoke
transport from Africa across the Indian Ocean,
guantifying evolution of loading and vertical distribution.

The elevated layer near Australia is distinct and extends
from 3 - 11 km, but AOD is only 0.04 +/- 0.008. The layer
starts with higher AOD (0.15 +/- 0.05) over Africa.
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rnal Variability

CATS data shows that, depending on

DJFMAM Max.-Min. Mean AOD

season and region, the diurnal

variability of the aerosol extinction

profile is as high as 0.10 km™.

e South America, Sahara and Sahel
regions in Africa, and Tarim Basin
in Asia are 3 noted locations.

e A-Train sensors are not capturing
this variability and geostationary
sensors cannot capture the

vertical profile.

0 DJFMAM Average Extinction Vertical Profile, Mauritania Coast DJFMAM Average Extinction Vertical Profile, Bodele Depression
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CATS NRT data products were created within 6 hours of data acquisition
Includes profiles of backscatter, depolarization ratio and feature mask

CATS observed the Mt. Etna plume on 04 Dec. at altitude of 12-14 km

Much higher than estimated using trajectory analysis after eruption (8-12 km)

40°N

35°N

30°N

10°E

Height (km)

(A) OMPS/NPP SO,
12/4/2015

Orbit #21255 Orbit #21254
ﬁxi T
\

‘X

Orbit #21253

kﬂ—b

M‘ﬁ%}}

(B) CATS ATB at 1060nm

12/04/2015 -- 15:44 UTC
20 : TE

-
Sl

108

20 E 30°E 40°E 50°E

(C) CATS ATB* at 1060nm

12/04/2015 -- 20:41 UTC
20§

Height (km)

344 346  34.8

338 340 342

36.0 358
Latitude Latitude

60°E

Attenuated Total Backscatter, km' sr’

5.0
4.5
4.0
35
3.0
25
2.0
15 O
1.0

0.5

olumn SO2 (DU)

17t AeroCom Workshop, 15-19 October 2018, College Park MD

15



Eric Hughes and Nick (A) OMPS/NPP SO, 12/5/2015
Krotkov (GSFC) forecasted SN Orbit #21268 ;

Orbit #21267

al
) 45 3
Etna volcanic SO, 45N > -
transport using GEOS- - 30 8
S E
5/GOCART r
35°N o Y
- - 0.5
Forecast using CATS data 10°E 20°E 30°E 40°E 50°E 60°E 70°E BO°E 80°E 100°E
to initiate volcanic plume v (B) GEOS-5 SO Trajectory Simulation
o o . o Feew * ) - T 20
injection height (C) agrees ; i RN = P .f |
. . 45°N ) : ol % 1.8
better with observations S :
_ . ok 2 . ! 16
(A) than forecast using e - - (23
trajectory analysis (B) 35°N kﬁ o N
' . £ : L 3 13
10°E 20°E  30°E  40°E  50°E  60°E  70°E  B80°E  90°E  100°E 2
[ 1.0 —
CATS NRT data provided (C) GEOS-5 SO, : CATS Simulation 2
an unprecedented W= 7 T T e
. e e i = o
opportunity to assimilate 45N | s ‘ G - T |y
global lidar data into o— i — - 104
-
aerosol forecast models. - L, : # 4 [qo2
: SN
= : “\-. - e r ¥ —0.0
Hughes et al. [GRL, 2016] 10°E 20° 30°E 40°E  50°E  60°E  70°E  B0°E  90°E  100°F
16

17t AeroCom Workshop, 15-19 October 2018, College Park MD



Data Availability

® @ €:\= Cloud-Aerosol Transport 5. ¥ | <=

http://cats.gsfc.nasa.gov/data/browse or NASA ASDC Website
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CATS data users, please note the instrument modes and data versions below:
» Mode 71 data from 10 Feb. through 21 March 2015, version 2-04 (V2.06 will be released shortly}
» Mode 72: data from 25 Mar. 2015 through present, version 2-06 CI. k

2016-06-07 HDF>
& button to
download

data file
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http://cats.gsfc.nasa.gov/data/browse

ssons Learned

1. PROGRAMATICS: You can design a quick-turnaround, lost cost Class D project that has science impact!

SINGLE WAVELENGTH: A single backscatter/depolarization wavelength can provide important data products!
CATS Data Products: Yorks al. [GRL, 2016]

3. 1064 NM: Robust 1064 nm data can help improve layer detection and Near-IR retrievals

4. LIDAR RATIOS: Dust lidar ratios at 1064 nm are similar to 532 nm, while smoke lidar ratios at 1064 nm are
much lower than 532 nm.

5. ACA: Smoke layers from biomass burning in the SE Atlantic are much closer to stratocumulus decks than
previously thought: Rajapakshe et al. [GRL, 2017]

6. TRANSPORT: Biomass burning smoke plumes become physically thicker but optically thinner during long-range
transport from Africa into the Indian Ocean: McGill et al. [ 2018]; Vaughan et al. [ACP, 2018]

7. DIURNAL VARIABILITY: Significant diurnal variability of cloud and aerosol vertical profiles exists on
regional/seasonal scales that is not captured by the sun-synchronous sensors due to sampling times: Logan
Lee (UND) and Noel et al. [ACP, 2018]

8. PLUME FORECASTING: Space-based lidar data latency of <6 hours has a big impact on forecasting and
monitoring hazardous events (i.e. volcanic eruptions and wildfires): Hughes et al. [GRL, 2017]

9. NRT DATA ASSIMILATION: CATS NRT data provided an unprecedented opportunity to assimilate global lidar
data into aerosol forecast models for improved vertical structure: See Ed Nowottnick’s poster.

Special thanks to:
— ISS Program (HEOMD) for funding the instrument
— NASA SMD for funding algorithms/data products (joint w/ LaRC)
— ROSES CCST 2015 for CATS-CALIPSO comparisons and analysis of aerosol properties
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Backup

Dust Smoke
~56+16 Sr (Omar et al., 2010)  21-37 Sr (Sayer et al., 2014)
~50 Sr (Liu et al., 2011) 29 Sr (Vaughan et al., 2015 ILRC
talk)
40 Sr (Vaughan et al., 2015 ILRC | 32-35 Sr (McGill et al., 2003)

talk)
44 Sr — CALIPSO Default (V4-10) 30 Sr — CALIPSO Default (V4-10)
40 Sr — CATS Default (V2-01) 40 Sr — CATS Default (V2-01)

40 * 20 Sr (CATS preliminary 37 £ 17 Sr (CATS preliminary
above cloud method) above cloud method
-fresh smoke)

17t AeroCom Workshop, 15-19 October 2018, College Park MD
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Statistical comparisons of CATS and CALIPSO 1064 nm backscatter and
calibration are underway

— 2 Different calibration techniques converging to same answer

Leading to improved data product maturity for both instruments

Higher confidence in combining the 1064 nm data from both instruments.
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CALIPSO:
Calibrated using 1064-532 cirrus
color ratio assumptions

CATS V2-07:
Low bias in normalization of
CATS backscatter signal to
Rayleigh profile

CATS V2-08:
Backscatter signal ACCURATELY
calibrated directly using
Rayleigh profile
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riability: Clouds

Why are we seeing different cirrus frequencies in the NH mid-latitude?

Differences in sampling times: CATS provides measurements at different local time
every overpass.

CALIPSO, other NASA A-Train instruments, ADM, and EarthCARE only observe
clouds and aerosols at the same 2 local times every overpass. Thus, they only
capture a “snapshot” of the diurnal variability seen by CATS (below).

CALIPSO OCEAN LAND

=== CATS data at CALIPSO time 0130AM
== CATS data at CALIPSO time 0130FM
=== CATS data al ADM tme DS00AM

—— CATS data at ADM time D600PM

=== CATS data at Earth-CARE time 02004M
— CATS dala al Earth-CARE time 0200PM
CATS daily range
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Noel et al. [ACP, 2018]
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oke Transport

The long-range smoke transport from Africa across the Indian Ocean is observed by CATS over the
Sept/Oct season in which the synoptic conditions are perfect for this transport.

The smoke transport is observed at ~40 S across the Indian Ocean from Africa to Australia.

Aerosol frequency - M7.2 L2 V3-00 - 2015, 2016 September & October, Nighttime only
Filters:

-» Any aerosol type except marine (type 1)
-> Base of aerosol layer >= 2 km

=> Only consider layers over "water" (surface type 17, modegd
-> Domain = TL(18N,20E) / BR(525,1&6
-> 3x3 degree grid boxes
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