

Intercomparison of global aerosol direct radiative effect estimates based on CALIOP

Dave Winker¹, Jason Tackett², and Seiji Kato¹ 1) NASA LaRC, 2) SSAI, Hampton, VA

Aerocom Workshop, College Park, MD, 15-17 October 2018

Estimating aerosol direct radiative effect (DRE)

• Models: 'bottom-up approach'

- "Infinite" complexity in modeling ERFari from first principles
- Multiple aerosol emissions sources, secondary production, aerosol nucleation, internal mixing, …

• Observations: 'top-down' constraints

- circa 2005: MODIS
 - Clear-sky only, typically ocean-only
- starting about 2010: CALIPSO
 - Global clear-sky, all-sky

Estimates based on MODIS

- A number of MODIS-based estimates appeared, circa 2005
 - Clear-sky only
 - Mostly ocean-only (retrievals over land more uncertain)

MODIS study	DRE (W/m ²)
Remer and Kaufman (2006)	-5.9
Bellouin et al. (2005)	-6.4
Loeb and Manalo-Smith (2005)	-5.5, -3.8
Zhang et al. (2005)	-5.3
Yu et al. (2003; 2004; 2006)	-5.7, -5.1, -5.5
Chou et al. (2002) (SeaWiFS)	-5.4

Global studies based on CALIOP

- **Oikawa, Nakajima, Inoue and Winker, 2013:** A study of the shortwave direct aerosol forcing using ESSP/CALIPSO observation and GCM simulation, JGR <u>118</u>, 3687–3708, doi:10.1002/jgrd.50227
- Henderson, L'Ecuyer, Stephens, Partain, and Sekiguchi, 2013: A Multi-sensor Perspective on the Radiative Impacts of Clouds and Aerosols, JAMC <u>52</u>, 853–871, doi:10.1175/JAMC-D-12-025.1.
- Matus, L'Ecuyer, Kay, Hannay and Lamarque, 2015: The Role of Clouds in Modulating Global Aerosol Direct Radiative Effects in Spaceborne Active Observations and the Community Earth System Model, J. Climate <u>28</u>, 2986–3003, doi:10.1175/JCLI-D-14-00426.1
- **Oikawa, Nakajima and Winker, 2018:** An evaluation of the shortwave direct aerosol radiative forcing using CALIOP and MODIS observations, JGR <u>123</u>, 1211–1233, doi:10.1002/2017JD027247.

Summary of CALIOP-based Results

Global TOA SW DRE (W/m²)

	Clear-sky	All-sky	Ratio of All/Clear
Oikawa, 2013	-2.9	-0.8	0.28
Oikawa, 2018	-3.7	-2.0	0.54
Henderson et al, 2013	-2.2	-1.6	0.73
Matus et al, 2015	-2.6	-1.9	0.73
Winker & Kato (C3M)	-3.3	-2.34	0.71

Computing RF_{ari} from Observations

The A-train provides most of the necessary quantities

Points of Difference

• Data product used

- Oikawa et al: MODIS C5 and CALIPSO V2 (2013), V3 (2018)
- Henderson et al: 2B-FLXHR; Matus et al: 2B-FLXHR-lidar
- Winker and Kato: C3M

• Temporal scale of observations

- Oikawa et al 2013, 2018: monthly averaged cloud/aerosol data
- Others: instantaneous cloud/aerosol data
- Conversion of Irradiance-to-flux & Instantaneous-to-diurnal
 - Winker and Kato: CERES methodology
 - Others: use more approximate methods
- Aerosol optical properties
 - Oikawa et al., Henderson et al, Matus et al. all use CALIOP layer typing and absorption from CALIOP aerosol models
 - Winker and Kato:
 - combination of observed and modeled aerosol type classification
 - Optical properties from OPAC, except for dust

Global TOA SW DRE (W/m²)

	Clear-sky	All-sky	Ratio of All/Clear
Oikawa, 2013	-2.9	-0.8	0.28
Oikawa, 2018	-3.7	-2.0	0.54
Henderson et al, 2013	-2.2	-1.6	0.73
Matus et al, 2015	-2.6	-1.9	0.73
Winker & Kato (C3M)	-3.3	-2.34	0.71

• Oikawa et al. 2013 based on CALIPSO V2 data

- Significant biases in AOD and low cloud fraction due to bug in Level 2 code
- All others use CALIPSO V3

Global TOA SW DRE (W/m²)

	Clear-sky	All-sky	Ratio of All/Clear	
Oikawa, 2013	-2.9	-0.8	0.28	
Oikawa, 2018	-3.7	-2.0	0.54	
Henderson et al, 2013	-2.2	-1.6	0.73	
Matus et al, 2015	-2.6	-1.9	0.73	
Winker & Kato (C3M)	-3.3	-2.34	0.71	

Oikawa et al. 2013 based on CALIPSO V2 data

- Significant biases in AOD and low cloud fraction due to bug in Level 2 code
- All others use CALIPSO V3
- Matus et al. 2015 vs. Henderson et al. 2013
 - 2B-FLXHR-lidar has much better representation of aerosol than the earlier 2B-FLXHR

Global TOA SW DRE (W/m²)

	Clear-sky	All-sky	Ratio of All/Clear	
Oikawa, 2013	-2.9	-0.8	0.28	
Oikawa, 2018	-3.7	-2.0	0.54	
Henderson et al, 2013	-2.2	-1.6	0.73	
Matus et al, 2015	-2.6	-1.9	0.73	
Winker & Kato (C3M)	-3.3	-2.34	0.71	

• Oikawa et al. 2013 based on CALIPSO V2 data

- Significant biases in AOD and low cloud fraction due to bug in Level 2 code
- All others use CALIPSO V3
- Matus et al. 2015 vs. Henderson et al. 2013
 - 2B-FLXHR-lidar has much better representation of aerosol than the earlier 2B-FLXHR

Aerosol optical properties

• Matus and Oikawa

both use aerosol type from CALIOP classification

• Winker and Kato

- Take aerosol type from MATCH, unless CALIOP identifies dust

	Matus et al, 2015	Oikawa et al, 2018	СЗМ
Marine	0.99	0.99	0.97- 0.985
Dust	0.99	0.92	0.98
Polluted Continental	0.96	0.93	0.98 - 0.94
Smoke	0.44	0.83	0.87- 0.97
Clean Continental	1.00	0.90	
Polluted Dust	0.96	0.85	

Aerosol SSA

C3M_regionalSSA_05-Jun-2012.ppt

CALIPSO-based vs MODIS-based Results: AOD biases

Mean Aug 2008 Clear-Sky TOA Aerosol Direct Radiative Forcing ($\Delta F_{dailv}^{clrSky}$) Modified/Control

CALIOP global AOD is about 30% lower than MODIS C6

Effect of 30% AOD increase

DRE (1.3 x AOD) / DRE (control)

	DRE (W/m ²)		
	<u>C3M</u>	<u>1.3 x AOD</u>	
Clear-sky	-3.44	-4.44	
All-sky	-2.18	-2.81	

Mean Aug 2008 All-Sky TOA Aerosol Direct Radiative Forcing ($\Delta F_{dailv}^{allSky}$) Modified/Control

1.1

1

1.2

1.3

1.4

1.5

0.8

0.9

Global mean DRE change ~ 30%

Regional deviations depend on: surface albedo cloud cover aerosol type (absorption)

Isn't DRE linear in AOD?

Simple relationship predicts DRE is linearly dependent on AOD

$$DRE = F \propto \omega \beta \tau (1 - \alpha)^2 - 2\alpha \tau (1 - \omega)$$

- (Coakley and Chylek, 1975; Haywood and Shine, 1995; Charlson et al., 1991)
- But misses some aspects of a broadband RT calculation which accounts for trace gas absorption

From 4-stream Fu-Liou RT

Summary

- Differences between CALIOP-based DRE estimates largely explained by differences in data products used and optical properties used
- Current uncertainties in AAOD are reflected in DRE diversity
- Current biases between satellite AOD products result in significant differences in DRE estimates
- But ... anthropogenic fraction is likely the largest uncertainty in estimating RF_{ari}

Finally ... a comment on Aerosol Indirect Effects

ARTICLE

DOI: 10.1038/s41467-018-05028-4

OPEN

Observational constraint on cloud susceptibility weakened by aerosol retrieval limitations

Po-Lun Ma¹, Philip J. Rasch¹, Hélène Chepfer^{2,3}, David M. Winker⁴ & Steven J. Ghan¹

