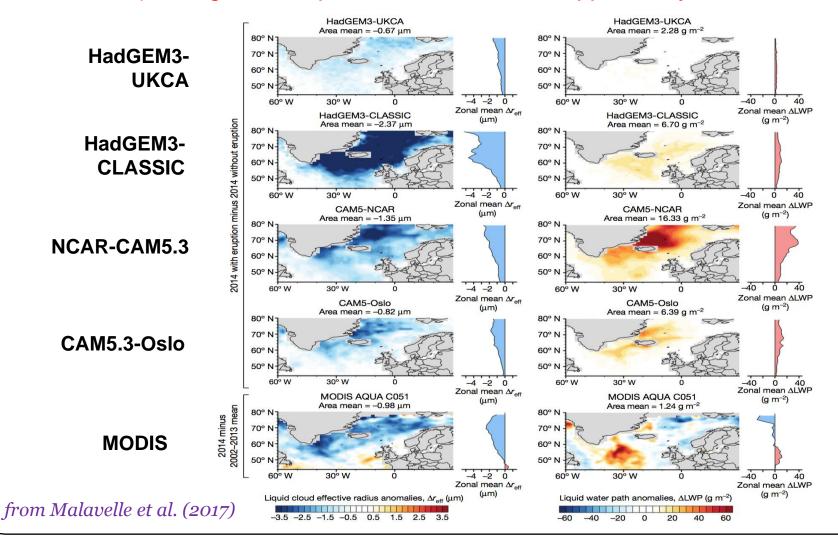
Update on the 'Holuhraun ACI Experiment'

Florent Malavelle and all groups participating, by deputy <u>Toshihiko Takemura</u>.

17th AeroCom workshop – 16th Oct 2018 – NOAA, College Park, MD, USA

We know that GCMs provides a wide range of ACI forcing ...

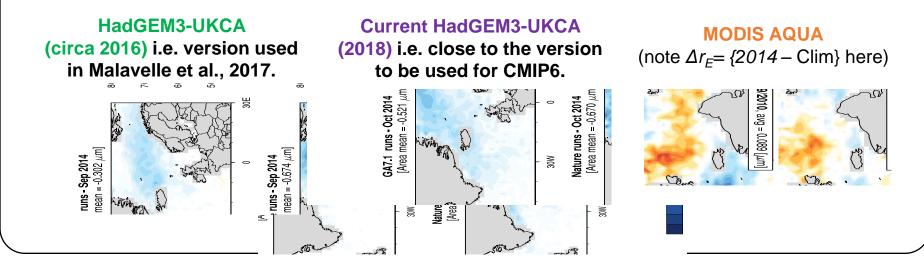

The 2014-15 fissure eruption at Holuhraun: is a great test for challenging the representation of ACI in GCMs.

Continental scale.

- Off/on to test the difference before/after.
- Emissions into a pristine(ish) environment, should enhance the impact owing to cloud susceptibility issues.
- Low altitude source as per anthropogenic emissions.
- Emissions into clouds typical of those influenced by anthropogenic pollution (not just stratocumulus).

Some GCMs response to Holuhraun eruption:

Key findings: *i*) Models have good skill in representing the strength of Twomey effect, but ii) strong LWP response however is not supported by observations



Expected outcomes for the Holuhraun experiment

- How state of the art GCMs capture aerosol indirect effects on this particular event ?
- Test models using <u>configuration as close as possible to CMIP6</u>.
- *Provide guidance on estimate of ERF_ACI and climate sensitivity.*

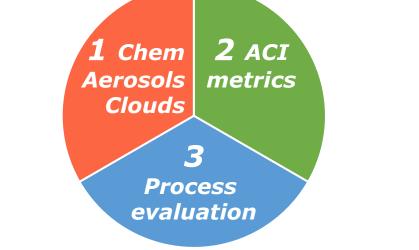
Could we expect surprises?

e.g. current version of HadGEM3 (i.e. 'quasi CMIP6') The Twomey effect is now much lower compared to MODIS.

What will we be looking at:

Required Diagnostics organised in 3 packages:

1 - MON_DIAG_PKG – 180+2 months (disentangle natural variability) (Mandatory)


- **2 ACI_DIAG_PKG** 2 months with eruption + 2 months from control. (optional)
- 3 PROCESS_DIAG_PKG –2 months with eruption + 2 months from control. (optional)

1 Chemistry, Aerosols & Clouds – (2D & 3D monthly means)

 Evaluation of chemistry-aerosols models (e.g. sulfate formation, removal), volcanic plume transport, to be linked with the Trajectory Experiment (D. Partridge) and cloud mean changes

2 ACI metrics – (2D, 3hourly)

 Cloud susceptibilities following the Indirect Experiment (Ghan et al., 2016, PNAS). Are susceptibilities during Holuhraun comparable to global susceptibilities?

3 Process evaluation – (2D, 6hourly)

Are the differences between climate model simulated LWP response related to differences in the onset of precipitation formation? (e.g. Michibata et al., 2016 ACP; Jing et al., 2017, JGR).

What's next for the 'Holuhraun ACI Experiment'

Approximately 15 models (not all independents) expected

to engage - Simulations completed or ongoing:

- Hadgem3-UKCA (Exeter)
- ECHAM6.3-HAM2.3 (Oxford)
- ECHAM6.3-HAM-P3 (ETH)
- CAM5.3-Oslo (Oslo)
- CAM6-NCAR (NCAR)
- MIROC-SPRINTARS (RIAM)

Timetable

- **Expected submission of model outputs by end of 2018:** There is obviously flexibility with dates and new participants are welcome to join.
- Analysis of the model outputs to start beginning of 2019
- First summary of the results to be presented at the next AeroCom meeting (October 2019).

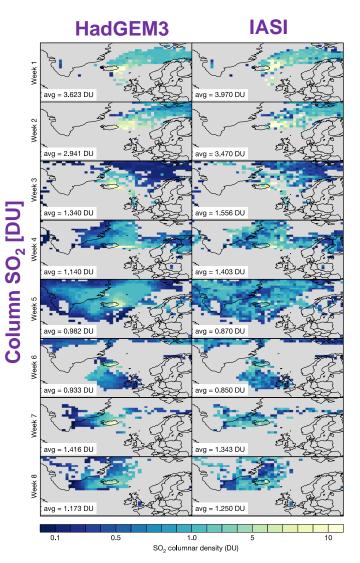
Resources for the experiment

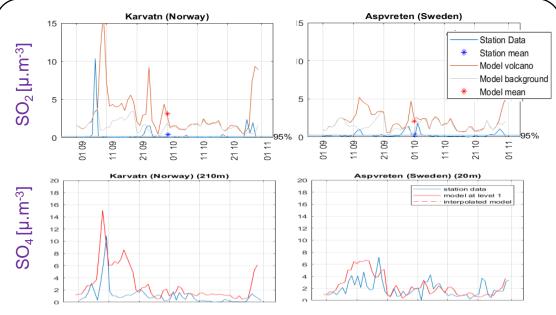
Exp. protocol and list of diagnostics finalised - Resources accessible online:

<u>5D</u>	<u>https://drive.google.com/drive/folders/1kDjywuf-</u> <u>5DND2kiiQw3hsPav9SQka2u0</u> roCom > Holuhraun_ACI_Experiment ~ 🟩						
Name ↓	Owner	Last modified	Size				
PDF Holuhraun_ACI_experiment_Setup_v2.pdf 🚢	Florent Malavelle	Aug 21, 2018	852 KB				
Holuhraun_ACI_Experiment_Modelling_Centres 🐣	Florent Malavelle	Sep 19, 2018	_				
X Holuhraun_ACI_experiment_diagnostics_v2.xlsx 🐣	Florent Malavelle	Aug 21, 2018	25 KB				

Data server created @Exeter to provide long term storage of model outputs.

- We expect 150-200 Go of outputs per model if all diagnostics are provided.
- Data will be available to the AeroCom community.

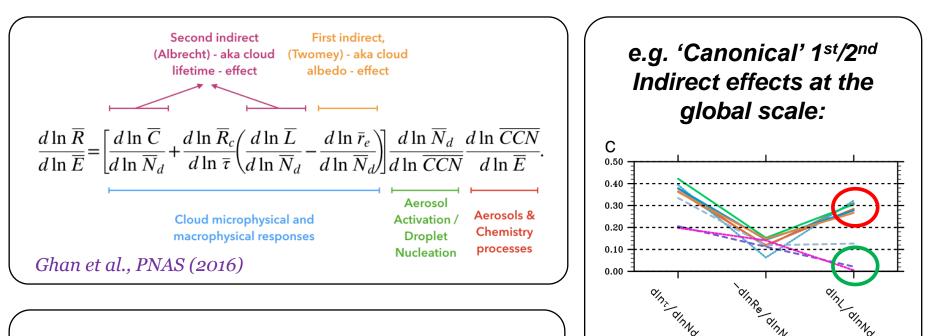

Questions and help can be addressed to Florent Malavelle: <u>f.malavelle@exeter.ac.uk</u>


Thanks!

Removed slides

1 – Chemistry & Aerosol evaluation

The plume of SO₂ is well-represented in coarse model (here HadGEM3) despite the resolution and crude emissions estimates.



- HadGEM3 captures the surface peak in SO₂ and SO₄
 measured at these two Scandinavian sites around 10-Sep.
- Background SO₂ seems to be too high. Too much contribution from anthropogenic sources?

Evaluation of the plume lifecycle will also be performed in a Lagrangian framework in coordination with the <u>Trajectory experiment (D. Partridge)</u>

2 – ACI metrics for each models

How much can we learn from Holuhraun ? Can it help constraining ACI overall ?

- Are the susceptibilities during Holuhraun similar to global susceptibilities?
- Can we better characterize where the diversity in the causal chain from Emissions to ERF_ACI originates?

• What most GCMs tend to do

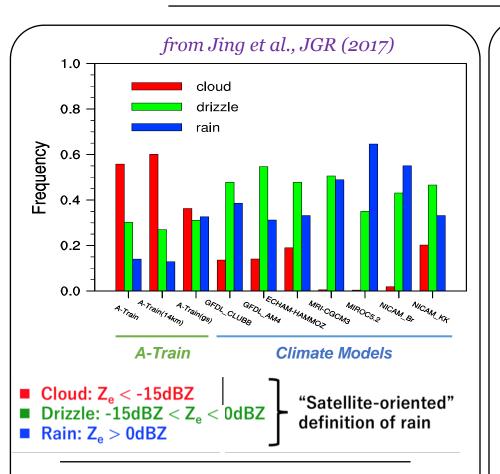
HadGEM3-UKCA

-SPRINTARS

ECHAM6-HAM

CAM5.3 CLUBB MG

CAM5.3 MG2


CAM5.3 PNNL

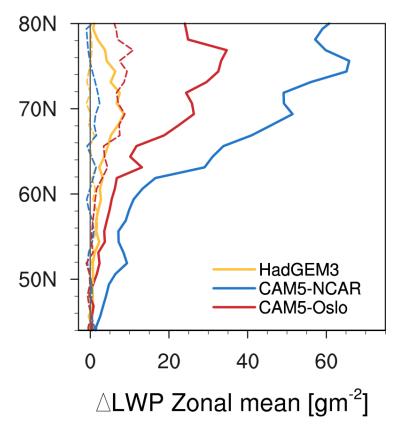
-CAM5.3

CAM5.3 CLUBB

 What is suggested from observations during Holuhraun.

3 – Process evaluation

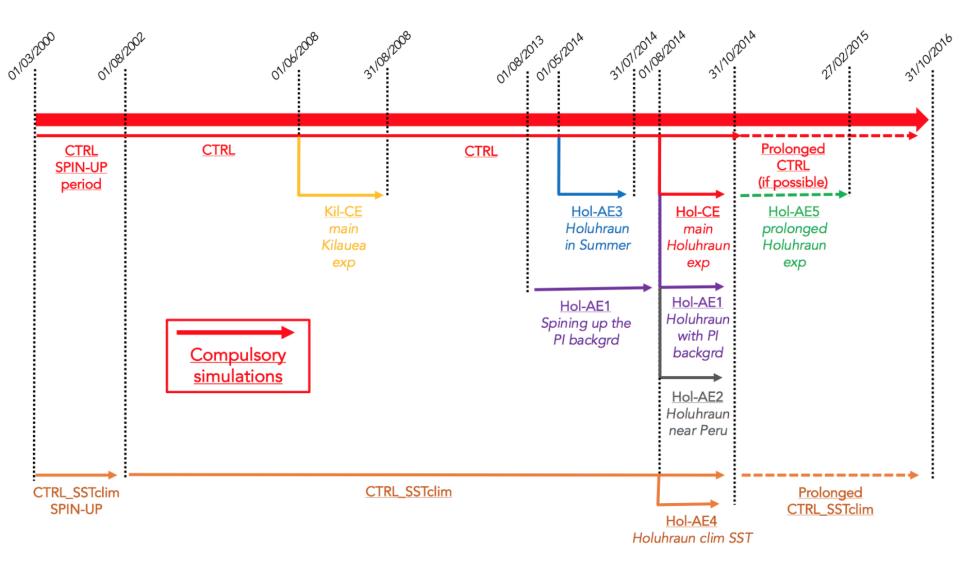
- Global Models are biased towards too much rain.
- Global Models tend too form rain too efficiently (e.g. Michibata et al., ACP 2016)

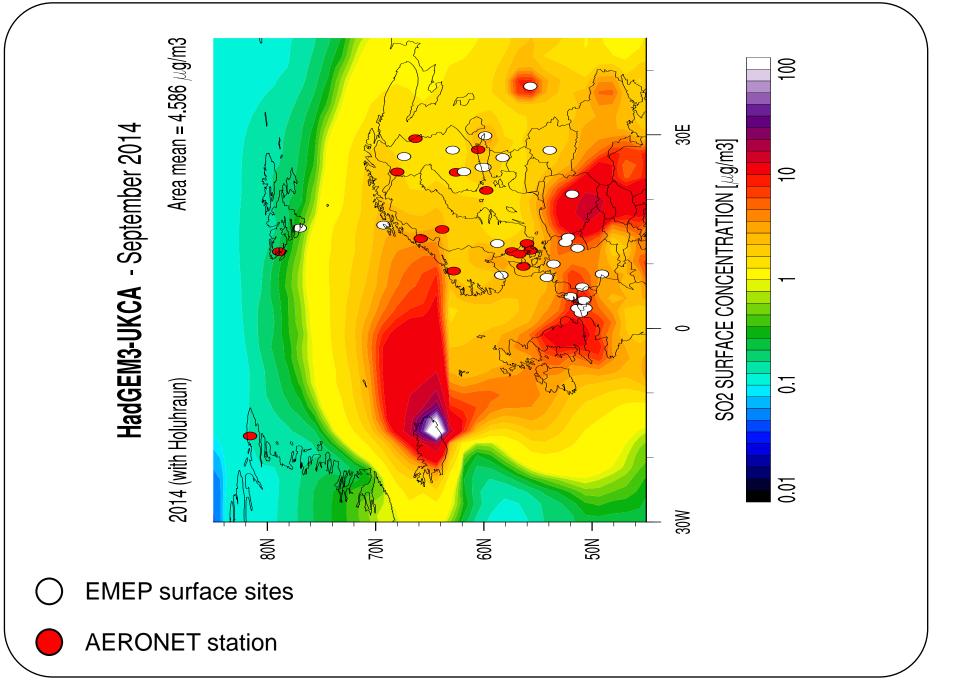

Systematic evaluation of models against observational constraints on precipitation efficiency needed:

- It is unclear why climate models strongly differ in their LWP response to aerosol perturbations.
- It is therefore essential to derive robust observational constraints on the processes driving this response.
- We hypothesise that differences in the climate model simulated LWP response might be attributable to differences in the onset of precipitation formation (as small-scale evaporationentrainment feedbacks are not represented).

Additional slides

3 – Process evaluation


Turning off dependence on CDNC in Autoconversion ...



Three GCMs, all use KK200. Yet the LWP response differ but why:

- Is just an autoconversion tuning exercise ? probably not …
- Are models missing crucial physical feedbacks? (e.g. Sato et al., 2018; Nature Comm.)
- Are models capturing warm rain process rates and cloud regimes correctly? *(e.g. Suzuki et al., 2011; JAS)*

Simulation design ...

Note for Participants – Fill the spreadsheet

		Drive			Hol File			•	ment_Mo Format Da	-	-		T
		50% -	£ % .0, →	.0 <u>0</u> 123 - H	elvetica 👻	12	~ E	3 I ·	S <u>A</u> ₹		53 -	≡ • * •	2 - 12
f	Rsync module fo	older name i.e	. centername (f	ixed and assign	ed by Universi	ty of Exe	ter)						
	A Point of Contact	B Modelling Centre	c Rsync module folder name i.e. centername (fixed and assigned by University of Exeter)	D Model Name (+ Version Number)	E Model resolution (Lat x Lon x LvL)	F Aerosol emission data-set used	G Aerosol scheme	н Aerosol nucleation parameterisat ion	Droplet activation scheme (e.g. ARG) & sub-grid scale updraft scheme (e.g. PDF, 20 bins)	J Stratiform clouds	K Rain scheme (diagnostic/ prognostic)	Autoconversion / Accretion (e.g. liq:KK)	M Nudging reanalysis (e.ş ERA-interim) relaxation tim used (e.g. 6hr
2	Anonymous Goose Florent Malavelle (f.malavelle@exeter.ac.uk)	University of Exeter	UEX	HadGEM3-UKCA & HadGM3-Easy Aerosol	(N96) 1.125x1.875x85	CMIP6 + GFED3.1	UKCA	UKCA	ARG & sub-grid scale updraft scheme (PDF, 20 bins, West et al., ACP 2014)	PC2 (Wilson et al. QJRMS, 2017)	Prog rain	liq: KK	ERA-Interim (U& 6 hourly)
3	Florent Malavelle (f.malavelle@exeter.ac.uk)	UK Met Office	икмо	HadGM3-Easy Aerosol	(N96) 1.125x1.875x85	CMIP6 + GFED3.1	UKCA	UKCA	ARG & sub-grid scale updraft scheme (PDF, 20 bins, West et al., ACP 2014)	PC2 (Wilson et al. QJRMS, 2017)	Prog rain	liq: KK	ERA-Interim (U& 6 hourly)
	Duncan Watson-Parris (duncan.watson-parris@physics.ox.ac. uk)	University of Oxford	υοχ	ECHAM6.3-HAM2.3									
	Inger Helene Karset (i.h.h.karset@geo.uio.no)	University of Oslo	UOS	CAM5.3-Oslo	0.95x1.25x30	CMIP6	OsloAero (Kirkevåg et al. 2018)	OsloAero	ARG	MG1.5 (Gettelman & Morrison 2015)	Diag rain	liq:KK	ERA-Interin (U& 6 hourly)
•	Gunnar Myhre (gunnar.myhre@cicero.oslo.no) & Ragnhild Bieltvedt Skeie (r.b.skeie@cicero.oslo.no)	CICERO	CICERO	OsloCTM3 & WRF						,			
	Andrew Gettelman (andrew@ucar.edu)	NCAR	NCAR	CAM6	1.9x2.5x32	CMIP6	MAM4	MAM4	ARG	MG2 (Gettelman & Morrison 2015)	Prog Rain	liq:KK modified so N exponent = -1.1	MERRA2, U&V, 2 hourly
I	Toshihiko Takemura (toshi@riam.kyushu-u.ac.jp)	Research Institute for Applied Mechanics, Kyushu University	RIAM	MIROC-SPRINTARS									
	Kentaroh Suzuki (ksuzuki@aori.u-tokyo.ac.jp) & Junya Uchida (junya@aori.u-tokyo.ac.jp)	University of Tokyo	υтο	NICAM									
)	David Neubauer (david.neubauer@env.ethz.ch)	Institute for Atmospheric and Climate Science - ETH	ЕТН	ECHAM-HAM-P3	(T63) 1.875x1.875x47	CMIP6	M7	Kazil and Lovejoy (2007) as described in Kazil et al. (2010)	ARG; TKE based single updraft	HAM2.3 (Neubauer et al., 2018)	diagnostic rain (prognostic ice phase precipitation, Dietlicher et al., 2018)	liq: KK	ERA-Interim; 24 surface pressur 48hr divergence 6hr vorticity