Anthropogenic Dust Experiment: Preliminary results Aerocom 17th

Paul Ginoux (NOAA GFDL)

æ

College Park (MD), October 15-:

Motivation

- Dust from landuse (cropland and pasture) represents 25% of global emission (*Ginoux et al., Rev. Geophys., 2012; Stanelle et al., J. Geophys. Res., 2014*) with large continental variability, but is generally ignored in aerosol models,
- Mineralogy of natural and landuse dust differs, which has implication for radiative forcing, ocean biogeochemistry, heterogeneous reactions with gas phase chemistry,
- Landuse dust and NH₃ hotspots are often collocated (*Ginoux et al., Atm. Chem. Phys., 2012*) which has implication for nitrate production (*Paulot et al., Atm. Chem. Phys., 2016*).
- Increase dustiness in Southern High Plains in the late 21st century (Pu and Ginoux, Scientific Reports, 2017)

TOMS based dust sources

MODIS based dust sources

- Frequency of Occurrence (FoO) of TOMS AI > 0.7 indicates dust sources preferentially located in topographic depressions (Prospero et al., Rev. Geophys., 2012)
- Natural sources = function of topography over bare soils (Ginoux et al., 2001)

- Dust Optical Depth (DOD) derived fom daily MODIS-DB level-2 C6 (Hsu et al., J. Geophys. Res., 2013) aerosol products (AOD(λ), QA, and SSA) from 2003-2014,
- Frequency of Occurrence (FoO) of DOD>0.2 per year over 12 years = dust sources (Ginoux et al., Rev. Geophys., 2012)
- Anthropogenic sources = FoO>0 and landuse>30% (landuse dataset for 2005 from Klein Goldwijk, Global Biogeochem. Cycles, 2001)

Anthropogenic and natural dust emissions

• Emission= $C_*FoO_*u^2_*(u-u_t)$

with threshold velocity $u_t = 6 \text{ m/s}$ (landuse<30%) and 10 m/s (landuse>30%)

Ginoux et al., Rev. Geophys., 2012

Experiments

- **CTRL**. Simulate with your own sources using your own CO and Uto.
- MDB2-A. Simulate with MDB2 natural sources with Uto, then calculate global emission Cnew to have same global mean annual emission as in 1. Cnew=C0 * (global mean annual emis exp1)/(global mean annual emis exp2)
- Simulate with MDB2 anthropogenic sources with Cnew and with:

MDB2-Ba	a) Uto
MDB2-Bb	b) 0.5*Uto
MDB2-Bc	c) 1.5*Uto

• MDB2-C. Simulate with MDB2 natural and anthropogenic sources with Cnew and Uto

Simulations from 2010 to 2012

Participating Models

Model	Resol.	Lev	Dust Scheme	Size	Reference	contact
NOAA GFDL AM4	0.65x0.5	33	Ginoux et al., 2001	5 Bins 0.1-10 μm	Zhao et al., 2018	Paul Ginoux
U Wyoming CAM5.4	2.5x1.9	30	Zender et al., 2003	4 Modes 0.01-10 μm	Liu et al., 2016	Xhiaohong Liu
U Aquila GEOS-Chem	2.5x2	47	Ginoux et al., 2001	4 Bins 0.1-6 μm	Fairlie et al., 2007	Paolo Tuccella

High sensitivity to Ut: Dust emission decrease by a factor 3 when the threshold of wind erosion over agricultural sources is 1.5 higher than for natural sources.

Mean bias decreases from CTRL to MDB2 $U_t^a = U_t^n$ to MDB2 $U_t^a = 1.5^* U_t^n$ but error increase specially for CAM5.4

GFDL AM4

U Wyoming CAM5.4

Using comparison of dust concentration with observations far away from sources is not useful as models treat transport and removal very differently (cf. Huneeus et al., Atm. Chem. Phys., 2011).

Uncertainties associated with landuse dataset

Uncertainties associated with version of landuse dataset

Klein Goldwijck, Global Bio. Cycles, 2001

Natural= 1144 Tg/yr (80%) Anthro = 273 Tg/yr (20%) Klein Goldwijck et al., Earth Sys. Sci. Data, 2017

Natural= 1373Tg/yr (92%) Anthro = 113 Tg/yr (8%)

Summarv

