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Presenter
Presentation Notes
We use both CALIOP satellite and NASA Langley Research Center (LaRC) airborne High Spectral Resolution Lidar 2 measurements to characterize biomass burning aerosol layers located over the Southeastern Atlantic Ocean. The HSRL-2 measurements were collected during the NASA EV S Observations of Aerosols above Clouds and their Interactions (ORACLES) missions in 2016 and 2017. HSRL-2 measured profiles of aerosol backscattering, extinction and aerosol optical depth at 355 and 532 nm and aerosol backscattering and depolarization at 1064 nm and so provided an excellent characterization of the widespread smoke layers above shallow marine clouds. We compute aerosol extinction and backscattering profiles for these layers from CALIOP attenuated backscatter data that are constrained by the CALIOP above cloud aerosol optical depth (ACAOD) using the return signals from the underlying clouds. These profiles provide more accurate ACAOD values and aerosol extinction profiles than the CALIOP V4 operational retrievals. During the July-October period in 2015-2016, these CALIOP profiles show that mean extinction values (532 nm) in the 300 m layer directly above the underlying clouds were above 0.020 km 1 about 55% of the time and above 0.050 km-1 nearly 20% of the time. These values decreased moving westward from the African coast. The HSRL-2 mean aerosol extinction profiles acquired during 2017 show considerably higher aerosol extinction just above the cloud top than profiles from the 2016 ORACLES deployment. In some cases, the HSRL-2 profiles also show vertical variability in aerosol intensive properties indicating changes in aerosol properties such as particle size. The HSRL-2 backscatter and extinction profiles are being used alone and in combination with airborne polarimeter measurements to reveal more detailed information about the vertical structure and the optical and microphysical properties of these extensive smoke layers.


NASA ORACLES Mission Studying Aerosol and Clouds over
Southeast Atlantic Ocean
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* NASA EV-S Mission - Observations of Aerosols
above Clouds and their Interactions (ORACLES) - ‘Wa,m Bay, Na ,b,a)
* Objective - study the impact of African biomass '
burning aerosol on cloud properties and the
radiation balance over the South Atlantic Ocean.
* Method - Airborne deployments of remote
sensing and in situ instruments during 2016,
2017, 2018
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Airborne NASA LaRC HSRL-2 Provides Valuable Aerosol
Measurements during NASA ORACLES Mission

HSRL-2 Data/Measurements/Retrievals:
e Aerosol backscatter, depolarization
(355, 532, 1064 nm)

Aerosol extinction and AOD profiles
(355, 532 nm)

Qualitative aerosol classification

Mixed layer height

Multiwavelength aerosol retrievals of | b,
particle properties (e.g. effective radius, HSRL-2 Aerosol Backscatter

concentration) Measurements on Sept. 22, 2016
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Presentation Notes
Slide of HSRL-2 data/measurements/retrievals, HSRL-2 AOD comparison with AERONET


Advanced technigue (HSRL) provides greater accuracy for
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=  Problem:
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Advanced technigue (HSRL) provides greater accuracy for

~

measuring aerosol EroEertieS @

= Solution:
Time 144 142 140 138 136 134 13.2 k" sr” — High Spectral Resolution Lidar (HSRL) measures both total and molecular

0.1 .
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= CALIOP operational aerosol profiles used to determine proximity of

208 +

elevated smoke layers to underlying clouds

» Problem: CALIOP V4 532 nm aerosol layer detection often misses
lower boundary of thick smoke layer due to strong attenuation of
upper part of smoke layer (current V4 algorithm CALIOP 1064 nm

penetrates further but uses 532 nm layer boundaries) resulting in:
— Underestimate of above cloud AOD (ACAOD)

— Overestimate in the size of the gap between smoke and cloud
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Evaluation of CALIOP Above Cloud AOD (ACAOD) Using HSRL-2
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Evaluation of CALIOP Aerosol Extinction Profiles
derived using CALIOP ACAOD Constraint

Sept. 20, 2016
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CALIOP constrained by ACAOD
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Caution! Aerosol extinction retrievals using ACAOD as a constraint assume
aerosol properties (i.e. lidar ratio) are constant
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computed using CALIOP ACAQOD constraint

Meridionally averaged aerosol extinction profiles
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Meridionally averaged aerosol extinction profiles computed using CALIOP ACAOD
constraint — variability with month
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Comparison of observed aerosol variables measured by

HSRL-2 between 2016 vs. 2017
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HSRL-2 and GEOS-5 MERRA-2 Comparison along ER-2 tracks during ORACLES-2016

.
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 MERRA-2 underestimates height of top of smoke layer

» MERRA-2 underestimates lidar ratios

355 nm

532 nm

Altitude (m)

Altitude (m)

7000

Aerosol Backscatter

6000 4
J

5000 4

F-Y
]
d

3000 4

2000 4

1000 4

ORACLES-1

0

7000

I B e S e B A mn s m e e ey e
0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.008 0.01C

Mean Backscatter at 355 nm (km'sr”)

60004

5000 4

T T T T T T

L
ORACLES-1 |
2079 profiles were averaged|
HSRL-2

MEDDAN

HSRL-2

MERRA2
3000
2000- =
===
1000 1 i1
0 —_——-

U U U U T U T T 1
0000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01C

Mean Backscatter at 532 nm (km'sr™)

Aerosol Extinction

Altitude (m)

Altitude (m)

7000

!

@
3
(=]

o
2
o
1

Ji ; MERRA2

T ‘ T d —r r r 1 1 - 17
g ! 2079 profiles were averaged
- ' HSRL-2

w F
a2 3
(=} (=]
1

2000

1000 4

0

0.00

7000

: ;
- T L T o T - T = T T o T
005 010 015 020 025 030 035 04C
Mean Extinction at 355 nm (km™)

6000 -L

§ 8

L . I T

ORACLES-1 |
2079 profiles were averaged|
HSRL-2

MERRAZ2

3000 4

2000 4

1000 s ’
:E'é"—\:“ == :

0

0.00

Ll T L T T
005 010 015 020 025 030 035 04C
Mean Extinction at 532 nm (km™)

Altitude (m)

Altitude (m)

7000

2000 o

Aerosol Lidar Ratio

THsRL-2

——r—y—r
ORACLES-1
2079 profiles were avera

MERRA2

7

T I. T L} L} L} T T 1 T
0 10 20 30 40 50 ©0 0 80 90 100
Mean Lidar Ratio at 355 nm (sr)

T r 11
ORACLES-1

l'|-r—T~-.\.,|-l|.

| 2079 profiles were averaged" T 4
HSRL-2 .
MERRA2 X \
—r—
—-

0 10 20

T I . T . Ll Ll T T T T T
30 40 S50 60 70 80 60 100
Mean Lidar Ratio at 532 nm (sr)

11C


Presenter
Presentation Notes
MERRA-2 aerosol layer height low compared to observation.
MERRA-2 lidar ratios low compared to observation

From Arlindo:
Ed, Sharon:
 
   Thank you very much for the plot. It summarizes well the GEOS-5 problem we saw throughout the 2016 deployment. It is interesting the HSRL seems a maximun at 1.5km and again at 4.5km. I hope we can address this in time for the 2018 deployment.
 
     Arlindo

Also from Arlindo:

this is for MERRA-2, not exactly what was running during the deployment. (Since MERRA-2 is a standard dataset from GMAO, it is good that we document its performance beyond what we had in the original papers.) We are still working on the high resolution simulations.




Multiwavelength HSRL-2 retrievals characterize
aerosol concentration and size during ORACLES
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Multiwavelength lidar retrieval
algorithms (Muller et al, 1999;
Veselovskii et al. 2002; etc)

lidar particle size
measurements ||distribution
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\ INVERSION \

PA) = fKﬁ(r m, A)v(r)dr
a(d) = fKa(r,m,zl)v(r)dr

size, refractive index, wavelength

3B+2a (i.e. 3 backscatter + 2
extinction) considered the minimum
information content necessary for
microphysical retrievals (Bockmann
et al, 2005)



Multiwavelength HSRL-2 retrievals characterize
aerosol concentration and size during ORACLES
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L5y Median Profiles of Aerosol Properties during ORACLES-2016 from HSRL-2
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Vertical Variability of Smoke Properties Observed by HSRL-2
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Summary

Airborne HSRL-2 measured/retrieved smoke layer aerosol optical and microphysical properties
during NASA ORACLES missions

Comparisons of CALIOP V4 operational and HSRL-2 aerosol measurements reveal:

— CALIOP V4 Above Cloud AOD (ACAQOD) is ~60-70% lower than HSRL-2 ACAOD

— CALIOP V4 aerosol extinction near layer top in good agreement with HSRL-2

— CALIOP V4 532 nm smoke lidar ratio (70 sr) in good agreement with HSRL-2 measurements of smoke lidar ratio
— CALIOP V4 aerosol extinction profiles do not resolve well smoke just above cloud top

Comparisons of CALIOP (DR — opagque cloud method) and HSRL-2 aerosol measurements reveal:
— CALIOP DR Above Cloud AOD (ACAQOD) agrees much better (within 10%) with HSRL-2 ACAOD

— CALIOP DR aerosol extinction profiles (532 nm) agree much better with HSRL-2 profiles and reveal more smoke
near cloud top

HSRL-2 measurements and retrievals reveal vertical variability in smoke layer optical properties and
particle size
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EVS-3 Investigation Summary:
Aerosol Cloud meTeorology Interactions oVer the western ATlantic Experiment (ACTIVATE)

Science: Build an unprecedented dataset to

ANCT/VATE better understand aerosol-cloud-meteorology
B-200King Air interactions, improve physical parameterizations

- for Earth system and weather forecasting models,

assess remote sensing retrieval algorithms, and
gllirln plnnc for future satellite missions

» Investigation start date: January 2019
» Airborne element:

o Platforms: NASA LaRC aircraft (HU-25 Falcon
= + B-200 King Air)
: | HU-25 Falcon | . . Basedhout of NASA LaRC, Hampton, VA
etk Bermuda. Approach:
"_;‘?ﬁhaﬂesmu L2 * Measurements: In situ and remote sensing
measurements of aerosol and cloud
distributions and properties, atmospheric state

Pl: Armin Sorooshian (University of Arizona)

Deputy PI: Xubin Zeng (University of Arizona) * Modeling: Particle dispersion, chemical
Investigation Manager: Mary Kleb (LaRC) transport, single-column, large-eddy
Project Scientist: Johnathan Hair (LaRC) simulation, cloud-resolving, weather
NASA Program Executive: Bruce Tagg (HQ) forecasting and climate modeling

NASA Program Scientist: Hal Maring (HQ)
ESSP Program Manager: Greg Stover (HQ-LaRC)
EVS-3 Mission Manager: Jennifer Olson (HQ-LaRC)

» Deployments:
« ~50joint airplane missions per year over
western North Atlantic Ocean in each of three
Partnering Institutions: Univ. Arizona, NASA LaRC, years (~600 hours and ~150 flights over three

NASA GISS, SSAI, NIA, PNNL, BNL, Univ. Miami years for each airplane)




Meridionally averaged aerosol extinction profiles computed
using CALIOP ACAOD constraint — daytime and nighttime
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Multiwavelength HSRL aerosol retrieval profiles compare well
to coincident airborne in situ measurements
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HSRL-2 characterizes smoke layer during ORACLES-2016
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HSRL-2 aerosol backscatter measurements
characterize:

— smoke and cloud layer heights and thicknesses

— thickness of the aerosol-free layer between the
smoke and cloud layers (i.e. the “gap”)

» Much (>40%0) of the time, there is no gap

Average over all HSRL-2 ORACLES-016 Flights
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HSRL technique enables identification of aerosol type and
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\ Intensive observables: /
* Independent of aerosol amount
Burton et al., AMT, 2012;
* Depends only on aerosol type 2013
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Presentation Notes
In addition to our fundamental products, the advanced instruments provide great skill in determining aerosol type, for instance, whether the aerosol is pollution or smoke or desert dust or marine sea salt aerosol.  
Here is an example from a flight from South Carolina to Tampa.  We see our standard backscatter product, the magnitude of which is determined by aerosol amount and type.
Because we have at least two wavelengths and have channels sensitive to the degree that particles depolarize the laser light, we also measure several intensive properties, i.e., properties that are independent of aerosol amount and depend only on aerosol type.  Here are three of these properties.  I’ll highlight the lidar ratio, which is the ratio of extinction to backscatter.  Because we measure extinction and backscatter independently, we can look at the ratio of the two to make inferences on aerosol type.  Just by looking at the colors here along our flight curtain, you can see that there is something different going in with aerosol type as we fly from north to south.
Running the data through our algorithms we get this curtain of aerosol type, in which we see pollution dominating the northern segment then run into a jag of dust that happened to be transported across the Atlantic from the Sahara desert, and finally the influence of marine aerosols from the Gulf of Mexico as we skirt the coast near Tampa.  Because we measure extinction, we can partition the overall optical depth (a metric of radiative forcing) by aerosol type.
In the future, global measurements like these would be extremely valuable for assessing and improving the predictions of chemical transport models, i.e., make sure they are getting the right amount of aerosol of the right type in the right location.  This will improve predictions of radiative effects and climate impacts as well as inform air quality forecasts.   Different aerosol types have different radiative effects and impacts on public health.
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» Smoke plume height higher in 2016 compared to 2017
e More dusty mix in 2016
» Below the clouds, more polluted marine and less clean marine in 2017

(beware sampling)
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Improvements:
Redo with smoke/urban/fresh smoke all colored red?

Or even redo classification without smoke/urban split?


@ackscatter and extinction profiles

2016-2017
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« 2017 smoke layer
peak is lower than
2016

e 2017 backscatter
and extinction at
near-cloud altitudes
IS larger — not
much “gap”
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Comparison of observed intensive variables

Altitude (km)
P

2016: Aerosol Depol. Lidar Ratio Extinction Angstrom Backscatter Angstrom
6 6 6
355 nm ] 355 nm 532/355
5t 5} 5
4 1064 nm —4 . -—-4[
$ gl £ 532/355
N g g3 1064/532
2 . 4 i 2] g 2 i 2
mEdlan CIOUd 'EOp median cloud top height cloud top height
1 s L T— 1f= e
% 0 1-? 0.2 0.3 0(; 40 60 8 % 5 1 1.5 % >°-5 1 16 2 25
Aerosol Depolariz'ation ' Lidar Ratio (sr)™ }-\ngstrom Exponeni Backscatter Angstrom Exponent
2017: Aerosol Depol. Lidar Ratio Extinction Angstrom Backscatter Angstrom
6 6 6 6 —
355 nm 532/355 . 532/355

Altitude (km)
(%)

5]

b“{i

(I Y S
0 r'a[w:m 0 1

355 nm

1064 nm

Altitude (km)

Altitude (km)

Altitude (km)

1064/532

40

10 ® 30

50 mme70 90 110

02 04 06 o0s 1 12 14 16 e
Angstrom Expo.

» Size (extinction Angstrom exponent), shape (aerosol depolarization) and

composition (lidar ratio)
» Less depolarization in 2017 because less dust
 Differences in lidar ratio, particularly 532 nm lidar ratio in upper part of plume
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Median Profiles of Aerosol Properties during ORACLES-2016 from HSRL-2
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S
Vertical variability on 2016 September 20
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Burton et al. 2018, Calibration of a high spectral resolution
lidar using a Michelson interferometer, with data examples

from ORACLES, Applied Optics, accepted

Below vs. above 4.4 km:

« Some smoke
depolarization

 Lidar ratio spectral
ratio reverses

» Extinction angstrom
exponent suggests
smaller particles

 Less relative humidity

Is this “young” smoke?
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Uses 12 minute segment around 10 UT


Figure 12. Profiles of particulate backscatter coefficient, particulate extinction coefficient, particulate depolarization ratio, and lidar ratio at 355 nm (blue) and 532 nm (green) plus extinction-related and backscatter-related Ångström exponents for the same two channels. Also shown are the relative humidity and aerosol extinction profiles from the WRF model.  The data are averaged over a 12-minute segment from 9:54-10:06 UT on 20 September 2016 and show smoke transported off the coast of Africa.  Vertical resolutions are 315 m for extinction, lidar ratio, and extinction Ångström exponent; and 15 m for backscatter, particle depolarization ratio, and backscatter-related Ångström exponent.  Error bars indicate one standard deviation of the variability of the included profiles.  Gray shading indicates systematic uncertainty in the 355 nm channel related to the contrast ratio and the assumption A=C=0.5.
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Smoke age from WRF-AAM

Aerosol Backscatter Coefficient (632 nm)
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HSRL-2 Backscatter
coefficient (532 nm)

WRF-CAMS5 Extinction
coefficient (532 nm),
good agreement for this
case
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Thanks to Pablo Saide for the model data.
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From Pablo, “one using the WRF-AAM that was used for forecasting and a WRF-CAM5 that was run after the campaign. While the WRF-AAM has the age tracers, the WRF-CAM5 has more detail representation of aerosols and optical properties. “
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Optical properties from Mie model
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Monomodal log-normal distribution of spherical particles (simple case).
Effective radius is varied.

All other variables fixed: effective variance = 0.195, CRI = 1.49-i0.01325
(wavelength independent)

As effective radius increases, and nothing else changes,
« Extinction angstrom exponent decreases
» Spectral ratio of lidar ratio reverses

» Conclusion: these optical signatures are primarily related to particle size
which may or may not be due to aging
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Figure 14. Theoretical results from Mie modeling of various lidar intensive parameters for a monomodal log-normal distribution with varying effective radius.  Effective variance is held fixed at 0.195 and refractive index is wavelength independent and held fixed at 1.49-i0.01325.  In the left panel are shown the lidar ratio at 355 nm (blue) and 532 nm (green) and in the right panel are Ångström exponents: extinction-related Ångström exponent between 355 and 532 nm (black), backscatter-related Ångström exponent between 355 and 532 nm (blue) and between 532 and 1064 nm (red).
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Figure 13. Theoretical results from Mie modeling of various lidar intensive parameters for a monomodal log-normal
distribution with varying effective radius. Effective variance is held fixed at 0.195 and refractive index is wavelength
independent and held fixed at 1.49-i0.01325. In the left panel are shown the lidar ratio at 355 nm (blue) and 532 nm
(green) and in the right panel are Angstrom exponents: extinction-related Angstrom exponent between 355 and 532 nm
(black), backscatter-related Angstrom exponent between 355 and 532 nm (blue) and between 532 and 1064 nm (red).

(Burton et al., 2018, submitted to Appl. Optics)




High Spectral Resolution Lidar (HSRL) technique for aerosol
rofilin
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« Tuning laser to an I, absorption line blocks
particulate backscatter from “Molecular Channel”

e 2 channels enable 2 equations to solve for 2
unknowns: aerosol backscatter andgeitinction




Airborne NASA LaRC HSRL-2 measures smoke distribution and properties for model
evaluation during NASA ORACLES Mission

 ORACLES Earth Venture Suborbital mission et s OR AL el 22 September 2016
« Target: Extensive biomass smoke plume over o = = a o
persistent stratus cloud deck off the west coast of

Africa
* Smoke has significant radiative effect:
localized absorption and impacts cloud
microphysics
e During first ORACLES mission, GEOS-5 model smoke
plume was systematically lower than HSRL-2
observations (da Silva - GSFC)
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Where CALIPSO identifies smoke, CALIPSO operational retrievals agree with HSRL-

2

CALIOP Attenuated Backscatter |

l

0.05

0.02
0.01
005

T T e
F L] A e
Pl gy 5 TS
" g ] =
* = L T
B =

002
001
_ g— e a Sed
13.34 1335 13.36 1331 2ed
Time

Altitude (km)

HSRL attenuated backscatter
Time 144 142 40 138 136 134 152 Km"srbt

0.0

0.02
0.01
005

Altitude (km)

002
001

T e | &4
Nt 219 06 493 460 467 455 442 [
Eln 93 80 87 B4 81 79 76

“...wonderful illustration of what we don't do so well
(detection).” (Mark Vaughan- CALIPSO team)

9/20/2016 By l'V"" sr]

6

eEs oL

4 1
£

27 01
LT T 001

13.34 13,95 1336 1337
CALIPSO aerosol backscatter

a4
HSRL aerosol backscatter g, [Mm™sr']
6 i

%4

£

9}

[

I

0 L L L
w5 4 135

Time [UTC]

912012016 - lkm l
;
" —:-'E, N
=, g1
g
93
¢
Iol_“lil 1§

1334 13.35 1336 1337

CALIPSO aerosol extinction

Time [UTC]



Increased information content from
multiwavelength HSRL enables retrievals of
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Mdller et al., 2014, Atmospheric Measurement Techniques. doi:10.5194/AMT-7-3487-2014
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