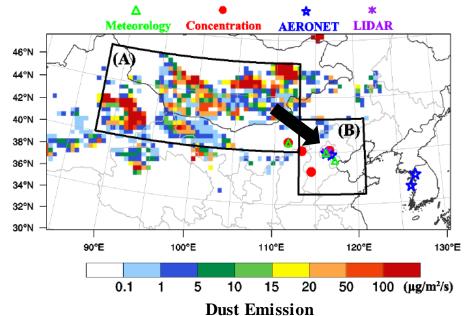
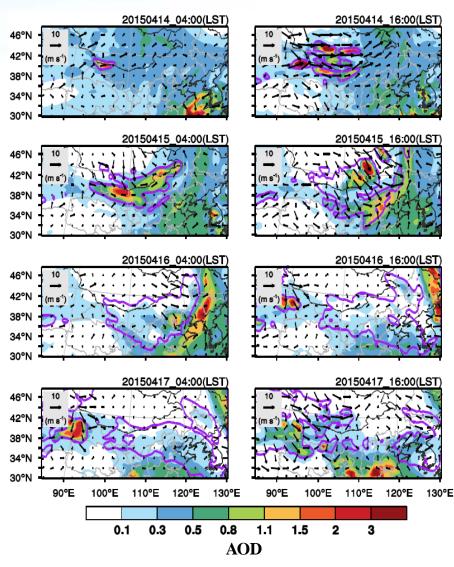

Institute of Atmospheric Physics Chinese Academy of Sciences

Model analysis of soil dust impacts on the boundary layer meteorology and air quality over East Asia in April 2015

Lei Chen^{a,b}, Meigen Zhang^{a*}


^aState Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences (CAS), Beijing 100029, China.

^bUniversity of Chinese Academy of Sciences, Beijing 100049, China


Outline

- > Background
- > Objective
- > Model description
- Model evaluation
- > Results
- Conclusion

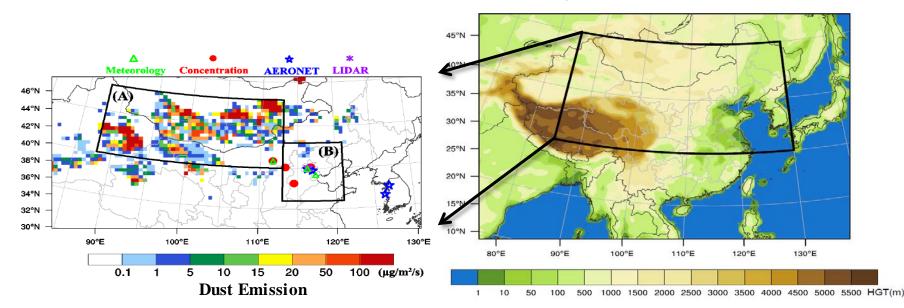
Dust Evolution

Objective

- Estimate radiative perturbations caused by dust particles.
- > Study the feedback between dust aerosols and boundary layer meteorology.
- ➤ Quantify the effects of dust-related heterogeneous chemical reactions on pollutant concentrations.

Model Description

WRF-Chem (v3.7)


➤ A version of WRF which can simulate trace gases and aerosols simultaneously with meteorological field.

Time:

➤ Simulation is conducted for the period over 10 to 18 April 2015, but results during 14–17 April are analyzed.

Domain:

➤ The model computational domain covers Asia (15.4°S–58.3°N, 48.5°E–160.2°E) using 180×170 grid points at 45 km horizontal resolution, but the inner region (29.8°N–50.6°N, 79.2°E–133.3°E) are selected to analyze.

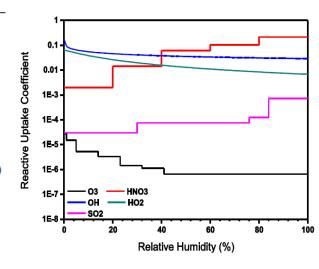
Data inputs

- ➤ Anthropogenic emissions are based on the MIX inventory for the year 2010.
- ➤ Biogenic emissions are calculated online using MEGANv2.04.
- Biomass burning emissions are taken from GFEDv3.1.
- ➤ NCEP Final reanalysis data is used as initial meteorological fields and boundary condition.
- ➤ MOZART output data is used as the chemical initial and boundary condition.

Parameterization schemes

Options	WRF-Chem	
Microphysics option	Morrison two-moment microphysics scheme	
Longwave radiation option	RRTMG scheme	
Shortwave radiation option	RRTMG scheme	
Surface layer option	MYNN surface layer	
Land surface option	Unified Noah land-surface model	
Urban canopy model	Single-layer UCM	
Boundary layer option	MYNN 2.5 level TKE scheme	
Cumulus option	Grell 3D ensemble scheme	
Photolysis scheme	Fast–J	
Dust scheme	Shao_2004	
Chemistry option	CBMZ	
Aerosol option	MOSAIC	

Dust scheme


- ➤ Shao_2004 scheme is proposed by Shao (2004JGR) and is implemented in WRF–Chem by Kang et al. (2011JGR).
- ➤ Previous studies have reported that Shao_2004 dust scheme had a good performance in dust emission amount over source areas and spatial distribution of dust particles over the downwind regions over East Asia (Kang et al., 2014AE; Su and Fung, 2015JGR).

Dust-related heterogeneous reaction

- ➤ Nine heterogeneous reactions are assumed to occur on the surface of dust particles.
- ➤ Absorption and heterogeneous reactions of gases on dust aerosols are commonly parameterized using a pseudo-first-order rate constant (Zheng et al., 2015ACP), and they are assumed to be irreversible (Jacob, 2000AE).
- ➤ The RH-dependence of reactive uptake coefficients are included to calculate the change of pollutant concentrations according to Zhu et al., (2010ACP) and Kumar et al., (2014ACP).

Reactions and Uptake Coefficients

Reactions	Uptake coefficients	RH–dependence Ref	Reaction Ref
$O_3 + Dust = Products$	RH-dependence	Cwiertny et al. (2008)	Zhu et al. (2010)
$HNO_3 + Dust = 0.5NO_x + Products$	RH-dependence	Liu et al. (2008)	Kumar et al. (2014)
$OH + Dust = 0.05H_2O_2 + Products$	RH-dependence	Bedjanian et al. (2013a)	Kumar et al. (2014)
$HO_2 + Dust = 0.1H_2O_2 + Products$	RH-dependence	Bedjanian et al. (2013b)	Kumar et al. (2014)
$H_2O_2 + Dust = Products$	2.00E-03	-	Pradhan et al. (2010)
$NO_2 + Dust = 0.5HONO + 0.5HNO_3$	2.10E-06	-	Zhu et al. (2010)
$NO_3 + Dust = HNO_3$	0.1	-	Martin et al. (2003)
$N_2O_5 + Dust = 2HNO_3$	0.03	-	Zhu et al. (2010)
$SO_2 + Dust = H_2SO_4$	RH-dependence	Preszler Prince et al. (2007)	Zheng et al. (2015)

Numerical experiments

- **CTL:** The control simulation with both dust emissions and heterogeneous chemical reactions on dust surface.
- ➤ NoD_NoH: The simulation neither with dust emissions nor heterogeneous chemical reactions on dust surface.
- ➤ **D_NoH:** The simulation with dust emissions but without heterogeneous chemical reactions on dust surface.

Experiments	Description	Dust	Heterogeneous Chemical reactions on dust surfaces
CTL1	Dust_Hetrxn	On	On
NoD_NoH ²	Nodust_Nohetrxn	Off	Off
D_NoH³	Dust_Nohetrxn	On	Off

NoD_NoH .vs. D_NoH: analyze the impacts of dust aerosols on radiative forcing and planetary boundary–layer meteorology.

D_NoH .vs. CTL: quantify the effects of dust-related heterogeneous chemical reactions on air quality.

Model evaluation

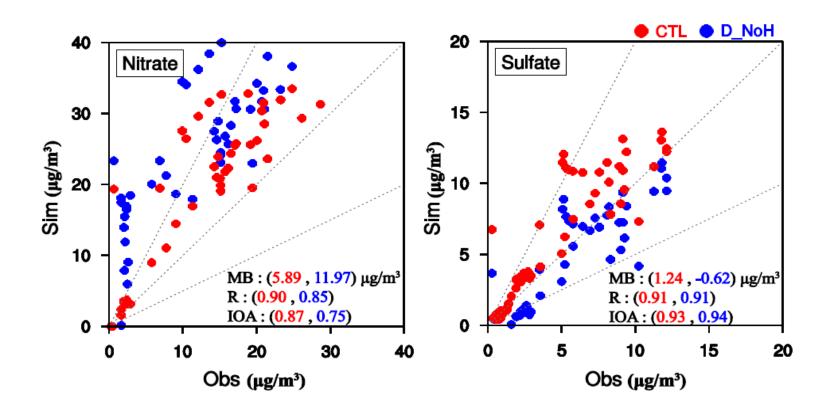
- ➤ Meteorological parameters:
 - Temperature
 - Relative Humidity
 - Wind
- > Surface-layer concentrations:
 - \circ SO₂
 - $^{\bullet}$ NO₂
 - Sulfate
 - Nitrate
 - PM_{2.5}
 - PM₁₀
- ➤ Aerosol optical depth (AOD)

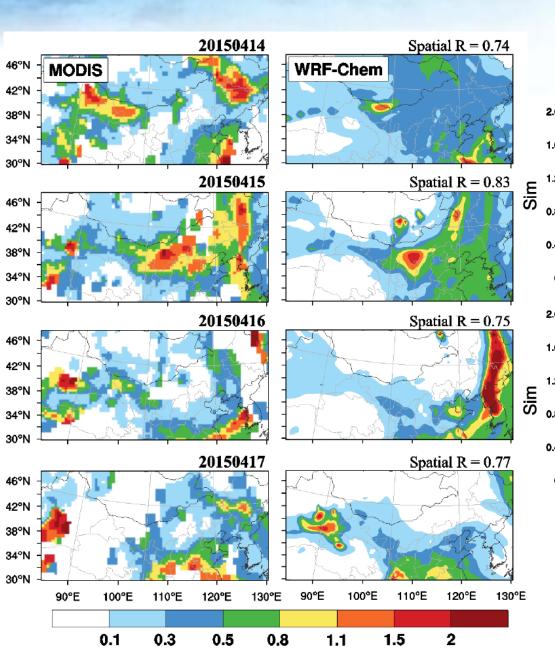
Statistics of comparisons between Obs and Sim

T_2 (°C)Beijing Beijing16.72 19.5419.54 2.82 2.82 3.292.96 0.96 0.91 0.95 0.95 0.96RH2 (%)Beijing Beijing Tianjin35.36 35.36 35.3629.53 35.75 2.09-5.83 7.85 2.0910.77 7.85 7.85 0.950.96 0.92 0.96WS10 ($m s^{-1}$)Beijing Hohhot4.61 55.813.95 4.61 4.92-0.66 4.13 4.93 4.95 4.953 3.311.96 -0.66 -0.79 3.148 3.146 <b< th=""><th></th></b<>	
Tianjin 17.49 16.96 -0.52 2.44 0.93 0.95 Hohhot 28.04 30.18 2.14 6.61 0.92 0.94 RH ₂ (%) Beijing 35.36 29.53 -5.83 10.77 0.96 0.92 Tianjin 33.66 35.75 2.09 7.85 0.95 0.96 Hohhot 3.70 3.52 -0.18 1.96 0.76 0.87 WS ₁₀ ($m s^{-1}$) Beijing 4.61 3.95 -0.66 2.51 0.84 0.76 Tianjin 4.92 4.13 -0.79 1.48 0.91 0.92 Hohhot 55.81 49.53 -5.73 31.46 0.44 0.65 Beijing 76.97 103.33 24.78 48.45 0.69 0.78 Shijiazhuang 78.56 111.11 32.71 49.85 0.46 0.55	
RH ₂ (%) Hohhot 28.04 30.18 2.14 6.61 0.92 0.94 RH ₂ (%) Beijing 35.36 29.53 -5.83 10.77 0.96 0.92 Tianjin 33.66 35.75 2.09 7.85 0.95 0.96 WS ₁₀ (m s ⁻¹) Beijing 4.61 3.95 -0.18 1.96 0.76 0.87 Tianjin 4.92 4.13 -0.79 1.48 0.91 0.92 PM _{2.5} (μg m ⁻³) Beijing 76.97 103.33 24.78 48.45 0.69 0.78 Shijiazhuang 78.56 111.11 32.71 49.85 0.46 0.55	
RH_2 (%) Beijing 35.36 29.53 -5.83 10.77 0.96 0.92 Tianjin 33.66 35.75 2.09 7.85 0.95 0.96 WS ₁₀ ($m s^{-1}$) Beijing 4.61 3.95 -0.66 2.51 0.84 0.76 Tianjin 4.92 4.13 -0.79 1.48 0.91 0.92 Hohhot 55.81 49.53 -5.73 31.46 0.44 0.65 PM _{2.5} ($\mu g m^{-3}$) Beijing 76.97 103.33 24.78 48.45 0.69 0.78 Shijiazhuang 78.56 111.11 32.71 49.85 0.46 0.55	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	•
WS ₁₀ ($m s^{-1}$) Hohhot 3.70 3.52 -0.18 1.96 0.76 0.87 Tianjin 4.61 3.95 -0.66 2.51 0.84 0.76 Tianjin 4.92 4.13 -0.79 1.48 0.91 0.92 Hohhot 55.81 49.53 -5.73 31.46 0.44 0.65 PM _{2.5} ($\mu g m^{-3}$) Beijing 76.97 103.33 24.78 48.45 0.69 0.78 Shijiazhuang 78.56 111.11 32.71 49.85 0.46 0.55	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	•
$\mathbf{PM_{2.5}}(\mu g \ m^{-3})$ Beijing 76.97 103.33 24.78 48.45 0.69 0.78 Shijiazhuang 78.56 111.11 32.71 49.85 0.46 0.55	
PM _{2.5} ($\mu g \ m^{-3}$) Shijiazhuang 78.56 111.11 32.71 49.85 0.46 0.55	
Snijiaznuang /8.56 111.11 32./1 49.85 0.46 0.55	
Shanxi 42.37 64.04 21.39 33.31 0.63 0.70	
	_
Hohhot 215.05 136.83 -79.69 217.47 0.63 0.63	
$PM_{10}(\mu g \ m^{-3})$ Beijing 165.56 168.79 6.35 136.37 0.75 0.77	
Shijiazhuang 211.33 206.24 -3.38 105.37 0.50 0.70	
Shanxi 145.19 140.88 -9.13 64.84 0.87 0.91	
Hohhot 10.83 9.78 -0.95 8.11 0.57 0.75	
SO ₂ (ppbV) Beijing 3.96 11.64 7.56 10.45 0.45 0.46	
Shijiazhuang 15.21 21.19 5.62 11.02 0.54 0.68	
Shanxi 10.53 17.86 7.46 10.10 0.82 0.72	_
Hohhot 21.00 18.86 -2.05 6.67 0.86 0.91	
Beijing 25.04 17.80 -7.08 13.89 0.70 0.79	
NO ₂ (ppbV) Shijiazhuang 22.54 19.91 -3.49 16.26 0.46 0.60	
Shanxi 14.37 13.58 -0.68 9.05 0.53 0.73	

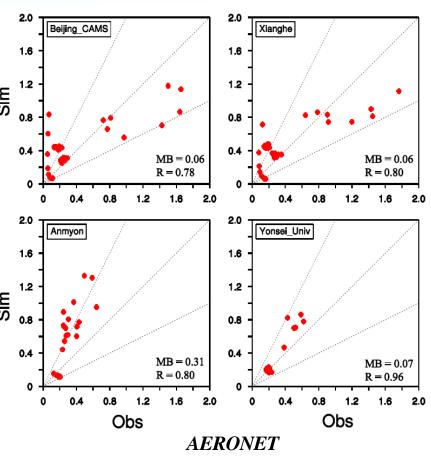
 $\mathbf{R}: [0.76, 0.96]$

IOA: [0.76, 0.97]


 $\mathbf{R}:[0.44,0.87]$

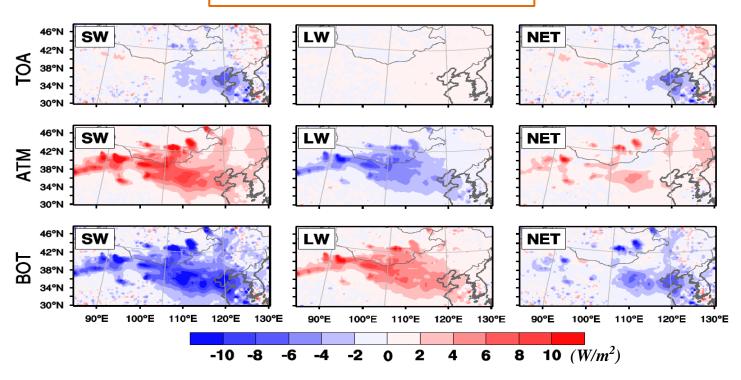

IOA: [0.55, 0.91]

 $\mathbf{R}:[0.45,0.86]$


IOA: [0.46, 0.91]

Scatter plots of hourly nitrate and sulfate concentrations

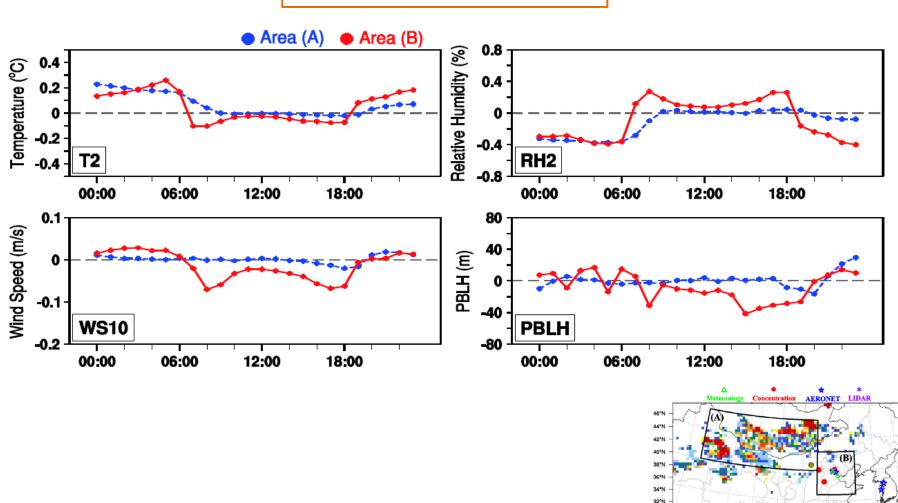
AOD at 550nm

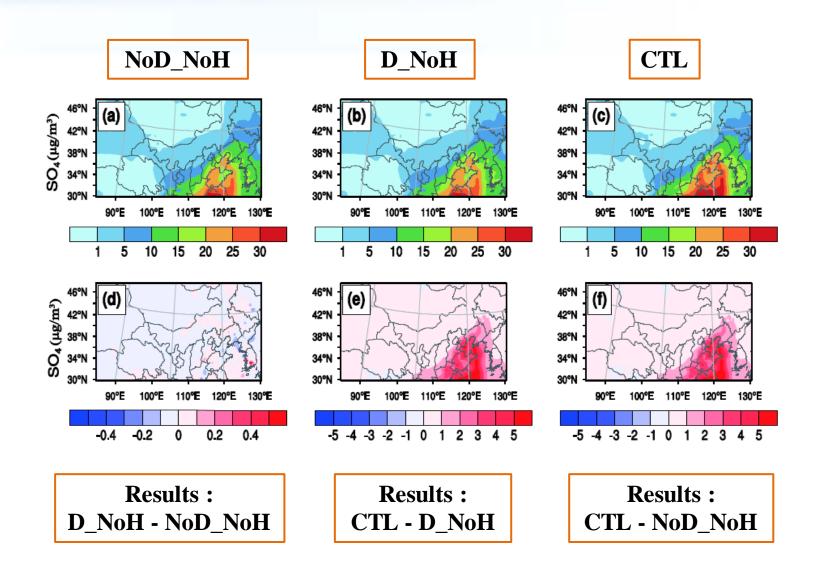


Results

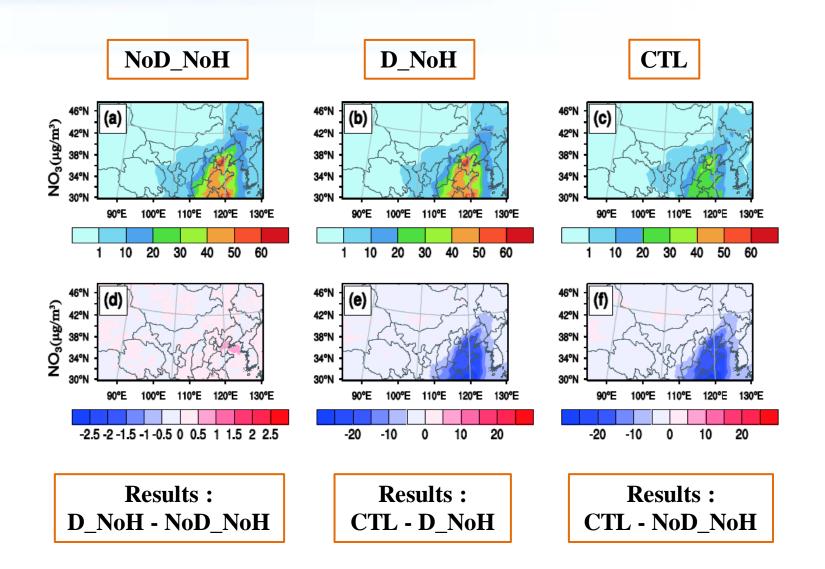
- > Impacts of dust aerosols on radiative forcing.
- > Impacts of dust aerosols on meteorological variables.
- > Impacts of dust aerosols on pollutant concentrations.

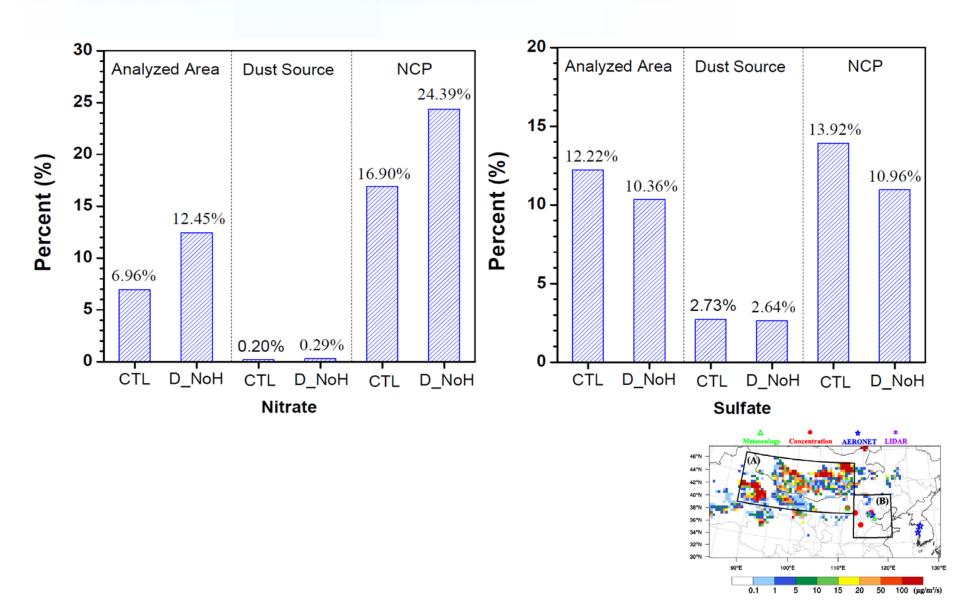
Impacts of dust aerosols on radiative forcing




	\mathbf{sw}	$\mathbf{L}\mathbf{W}$	NET
TOA	-0.54	0.25	-0.29
ATM	2.41	-1.50	0.90
BOT	-2.95	1.76	-1.19

Impacts of dust aerosols on meteorological variables


 $Results = D_NoH - NoD_NoH$


Impacts of dust aerosols on sulfate concentrations

Impacts of dust aerosols on nitrate concentrations

Mass percentage to PM_{2.5}

Conclusions

- ➤ Dust has a cooling effect (-1.19 W m⁻²) at the surface, a warming effect (0.90 W m⁻²) in the atmosphere and a small forcing (-0.29 W m⁻²) at the top of the atmosphere averaged over East Asia.
- ➤ The near—surface air temperature is decreased by 0.01°C and 0.06°C in the daytime and increased by 0.13°C and 0.14°C at night averaged over dust sources and NCP. The changes in relative humidity are in the range of −0.38% to +0.04% for dust sources and −0.40% to +0.27% for NCP. The maximum decrease of wind speed is ~0.1 m s⁻¹ over NCP. PBLH during the daytime exhibits maximum decreases of 16.34 m and 41.70 m over dust sources and NCP, respectively.
- \triangleright Due to dust–related heterogeneous reactions, a maximum decrease of 35.04 μg m⁻³ for NO_3^- and a maximum increase of 9.47 μg m⁻³ for SO_4^{2-} are found over downwind areas.

Thank you