The transport of sea-spray spume during high-wind conditions and its effects on sea salt aerosol emissions

Lin Wu Institute of Atmospheric Physics, CAS

Background

Ocean-produced sea-salt aerosols are the most numerous naturally emitted aerosols.

Effects:

- Air quality and visibility of the coastal cities
- Direct and indirect climate effects
- Related with the salinity upper boundary layer in the Ocean Generation Circulation Model (OGCM), the small quantity perturbation of salt flux can modify the ocean's meridional circulation (*Bryan*, 1986; *Marotzke et al.* 1988, 1991; *Weaver*, 1991; *Hofmann and Rahmstorf*, 2009)

(*Textor et al.*, 2006, Analysis and quantification of the diversities of aerosol life cycles within AeroCom, ACP)

What we do?

Outline

- Atmospheric Boundary Layer (ABL) observations and analysis
- 2. Methodology
- 3. Results
- 4. Conclusions

1. ABL Observations and analysis

Marine Meteorological Science Experiment Base (Bohe, Guangdong, China)

Instruments settled on the platform

Two typical cases

Typhoon: Hagupit, September 2008, data from Zhizi island
 & observation platform;

10-min average: 48 m/s; 3-sec instant: 64 m/s

• Cold surge: Jan.-May 2012, data from Observation

plata hours: 10 m/s; 103 hours: 12 m/s

Observations are continued...

ABL characteristics analysis

Time series of u and w during 0400-0500 BST 24 September 2008

Cold surge:

Time series of u and w during 2100–2130 BST 23 March 2012

C1: ABL near the sea surface is not the classical Kolmogorov turbulence, not completely random or isotropic.

C1: there exists coherent gusty disturbances

energy spectrum of the high-frequency turbulences at different wind speeds (black: cold surge; blue & red: Hagupit)

C2: The energy spectrum of the high-frequency turbulences still follow the Kolmogorov's law

Time series of the u and w profiles

C4: u can be an important factor in parameterization

Parameterization of friction velocity

2. Method of the transport of particles in high-wind ABL

Why consider coherent gusty wind?

ABL: turbulence

Werner Heisenberg: "When I meet God, I am going to ask him two questions: Why relativity? And why turbulence? I really believe he will have an answer for the first."

Two progresses: intermittency & coherent structure

Brown-Roshko structur in the mixing layer

(Coherent structure in ABL? Complex underlying surface)

Coherent structures are important to the maintenance and evolution of turbulence, and also to the particle & energy transport.

The current transport method of the sea-spray droplets is based on the classical turbulence theory

- Sea salt aerosols are usually less than 20 μm;
- The large size droplets would fall back into the ocean relatively quickly in the absence of wind.

The large size (>20 µm) spume?

However, the large size spume are usually generated because of the high-wind.

Veron (2015): Annu. Rev. Fluid Mech.

- Transport & effects of large size spume are still in debate;
- The current schemes are not suitable for strong wind

The modified method is based on the new characteristics of ABL in high-wind:

$$oldsymbol{u} = oldsymbol{\overline{u}} + oldsymbol{u}'$$
 $oldsymbol{u}_t$: makes particle diffuse $oldsymbol{t}$: makes particle diffuse $oldsymbol{t}$: Transport in high-wind conditions

Vertical transport of the spume considering gusty wind

Modified Lagrangian stochastic model

$$\begin{cases} \frac{\mathrm{d}u_{p}\left(t\right)}{\mathrm{d}t} = \frac{f}{\tau_{p}}\left(\overline{u}\left(x_{p}, z_{p}, t\right) + u_{g}\left(x_{p}, z_{p}, t\right) - u_{p}\left(x_{p}, z_{p}, t\right)\right) \\ \frac{\mathrm{d}w_{p}\left(t\right)}{\mathrm{d}t} = \frac{f}{\tau_{p}}\left(\overline{w}\left(x_{p}, z_{p}, t\right) + w_{g}\left(x_{p}, z_{p}, t\right) + w_{t}\left(x_{p}, z_{p}, t\right) - w_{p}\left(x_{p}, z_{p}, t\right)\right) - g \end{cases}$$

$$\begin{cases} \frac{\mathrm{d}x_p}{\mathrm{d}t} = u_p \\ \frac{\mathrm{d}z_p}{\mathrm{d}t} = w_p \end{cases}$$

Blue: from the observation data & parameterization

Red: Langevin equation (*Thomson*, 1987)

3. Resutls

- For $r_{80} \in [9, 12, 16, 20, 30, 40, 50, 60, 80, 90, 100]$ µm and $U_{10} \in [10, 15, 20, 25, 30, 35]$ m s⁻¹, each size-velocity case
- 1,000 particles are calculated and the uplifting ratios are obtained statistically

Can the large-size spume fly into the 100 m height in ABL? Using the observation data in cold surge,

The Uplifting Ratio for Spume during Strong Winds (10-35 m s⁻¹)

$V_{80}(\mu \text{m})$ $U_{10} k_{\text{up}}(\%)$	9	12	16	20	30	40	50	60	80	90	100
(m/s) 10	50.7	54.7	51.5	51.7	44.5	37.3	28.9	20.3	8.5	4.5	2.6
10	30.7	34.7	31.3	31.7	44.5	37.3	20.9	20.3	0.5	4.5	2.0
15	69.4	69.9	65.3	66.4	66.9	63.6	57.2	53.3	44.0	37.8	34.5
20	71.1	73.8	71	71.4	71.3	72.1	63.8	59.3	50.9	46.6	40.2
25	100	100	100	100	100	100	100	100	80.3	73.2	71.0
30	100	100	100	100	100	100	100	100	100	99.6	96.5
35	100	100	100	100	100	100	100	100	100	100	100

parameterization: $\lambda = U_{10}^2/(r_{80}g)$

$$k_{\rm up} = \begin{cases} -15.7\lambda^{-0.7} + 79.35, \\ \left(10 \text{ m s}^{-1} < U_{10} < 20 \text{ m s}^{-1} \text{ and } 0.1 \le \lambda < 4.5\right) \\ 83.56\lambda + 15.9, \\ \left(20 \text{ m s}^{-1} \le U_{10} < 35 \text{ m s}^{-1} \text{ and } 0.5 \le \lambda < 1\right) \\ 100. \\ \left(20 \text{ m s}^{-1} \le U_{10} < 35 \text{ m s}^{-1} \text{ and } 1 \le \lambda \le 14\right) \end{cases}$$

Effective SSGF

The original SSGF for spume (*Andreas*, 1998)

$$\frac{\mathrm{d}F}{\mathrm{d}r_{80}} = \begin{cases}
C_1(U_{10})r_{80}^{-1}, & 10 \le r_{80} \le 37.5 \,\mu\mathrm{m} \\
C_2(U_{10})r_{80}^{-2.8}, & 37.5 \le r_{80} \le 100 \,\mu\mathrm{m} \\
C_3(U_{10})r_{80}^{-8}, & 100 \le r_{80} \le 250 \,\mu\mathrm{m}
\end{cases}$$

$$\frac{\mathrm{d}F_{\mathrm{up}}}{\mathrm{d}r_{\mathrm{o}}} = \frac{\mathrm{d}F}{\mathrm{d}r_{\mathrm{o}}} \cdot k_{\mathrm{up}}$$

Size spectrum of the uplifted spume droplets at different wind speeds

(dotted line: original; solid: effective)

Concentration

$$\left(\frac{\mathrm{d}N}{\mathrm{d}r_{80}}\right)_{i} = \left(\frac{1}{V_{d}}\right)_{i} \left(\frac{\mathrm{d}F}{\mathrm{d}r_{80}}\right)_{i}$$

increases slightly with r_{80} until r_{80} reaches 34.3 μ m

Mass concentration & comparisons

spume mass concentration for different wind speeds at 100 m

4. Conclusions

- Transports of sea-spray spume in high-wind considering the coherent gusts are studied
- Large-size spume can fly into the 100 m height in the atmospheric boundary layer
- The vertical flux and mass concentration of spume are estimated and comparable with the current observations

Thank you for your time and attention

Monthly mean U_{10} : 8.14 Pg/yr

Daily mean U_{10} : 22.71 Pg/yr

6h mean U_{10} : 29 Pg/yr