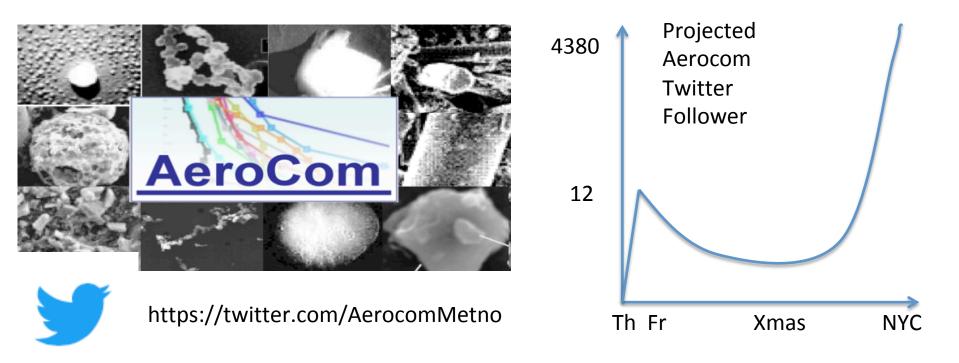
AeroCom wrapup

Barcelona 25 Sep 2019

Barcelona 15 June 2015


AeroCom workshop 2019 Special thanks

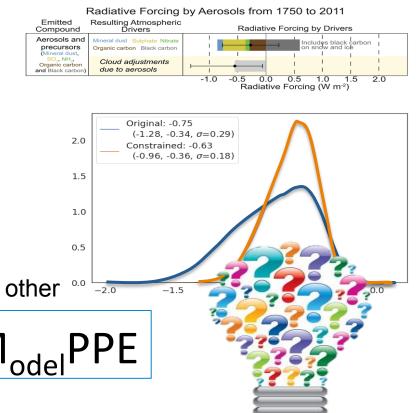
Carlos Pérez Garcia-Pando, Alexis Chantasack , Sara Basart, Maria Goncalves, Martina, Dene, Jeronimo Escribano, + BSC team ++ Stefan Kinne

AeroSAT

AeroCom

New Communication strategy and goal

Apple to oranges?


artist Edward Gryspeerdt

Meteorol....

artist Lucia Deaconu

1. Constrain models using observations

2. Compare (constrained) models to each other ^{o.o L}

PPE

➡ M_{ulti}M_{odel}PPE

Climate Processes Group

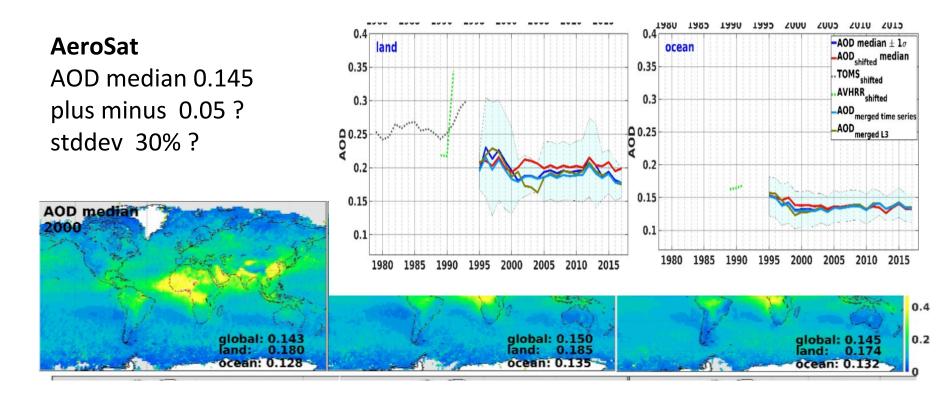
The aerosol forcing is still uncertain!

n

- Anthropogenic AOD and total AOD are correlated in models and aerosol retrievals can further be used to constrained anthropogenic AOD
 - Why? Are the total coarse mode aerosol (sea salt and mineral dust) better constrained by satellite ٠ retrievals, so uncertainties are mainly caused by aerosol species which has anthropogenic and natural contributions? What is the maximum global AOD (550 nm) from satellite retrievals?
 - ٠
- Black carbon has a weak surface temperature hange caused by strong negative rapid adjustments.
 Forcing and temperature change seem to scale linearly for emissions increasing up to at least a
 - 'n2' factor of 10.
- Aerosol forcing (ERF) stronger negative than -2 Wm⁻² in climate model simulations •
 - Fine mode aetoms causing almost entirely the global mean forcing, but with regional variations. •
- Several studies indicate increase in dust over the industrial era.
 - Coarse mode mineral dust strongly underestimated in climate models ٠
 - The magnitude of the missing coarse mode of mineral dust on the (direct) radiative effect is +0.15
 - Wm⁻² compared to recent estimate and even stronger than in AeroCom models.

eteorologisk

Focus !!

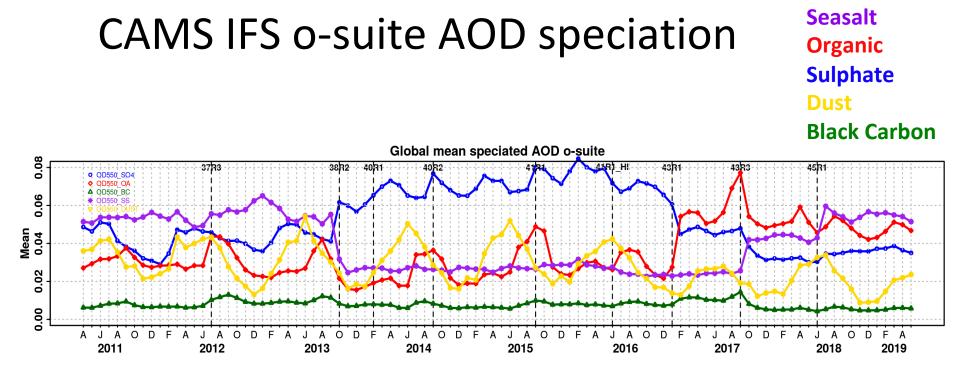

Meteorologisk institutt

New AeroCom/AerChemMIP model generation

Meteorologisk institutt

AOD analysis with AeroCom tools

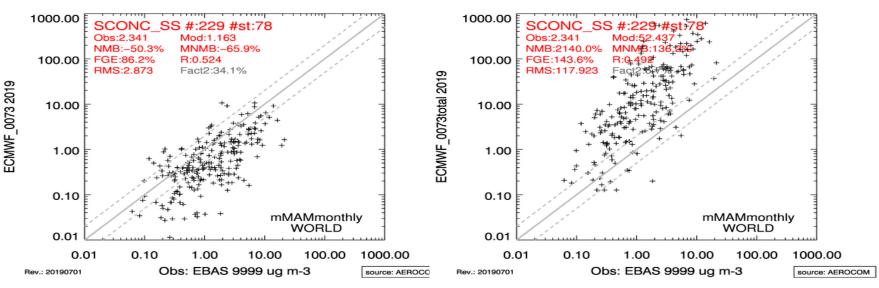
Model	Anthro AOD	Natural AOD	Total AOD		
CESM2_historical	0.014	0.128	0.141		
GEOS-i33p2-met2010_AP3-CTRL	0.016	0.110	0.125		
CESM2-WACCM_historical	0.019	0.125	0.144		
ECHAM6.3-HAM2.3-met2010_AP3-CTRL	0.023	0.125	0.148		
NorESM2-LM_historical	0.032	0.141	0.173		
OsloCTM3v1.01-met2010_AP3-HIST	0.028	0.102	0.130		
IPSL-CM6A-LR_historical	0.030	0.081	0.111		
GFDL-CM4_historical	0.045	0.105	0.150		
CanESM5_historical	0.045	0.100	0.146		
CAM5-ATRAS_AP3-HIST	0.041	0.083	0.125		
MIROC-SPRINTARS_AP3-CTRL	0.033	0.065	0.097		
Mean	0.030	0.106	0.135		
Standard Deviation / Mean	38%	22%	15%		


Merging regional and global AOD records from 15 available satellite products

Larisa Sogacheva¹, Thomas Popp², Andrew M. Sayer^{3,4}, Oleg Dubovik⁵, Michael J. Garay⁶, Andreas Heckel⁷, N. Christina Hsu⁸, Hiren Jethva^{3,4}, Ralph A. Kahn⁸, Pekka Kolmonen¹, Miriam Kosmale², Gerrit de Leeuw¹, Robert C. Levy⁸, Pavel Litvinov⁹, Alexei Lyapustin⁸, Peter North⁷, Omar Torres¹⁰

5

https://doi.org/10.5194/acp-2019-446 Preprint. Discussion started: 21 June 2019 © Author(s) 2019. CC BY 4.0 License.



Evaluation attempt of surface sea salt concentration, CAMS-IFS model versus EBAS database

PM10 sea salt

Total sea salt

SAM-CAAM 15 Required Variables

[Systematic Aircraft Measurements to Characterize Aerosol Air Masses]

1. AEROSOL PROPERTIES FROM *IN SITU* MEASUREMENTS & INTEGRATED ANALYSIS

	Abbrev.	Required Variable
1	EXT	Spectral Extinction
2	ABS	Spectral Absorption
3	GRO	Hygroscopic Growth
4	SIZ	Particle Size
5	СМР	Particle Type (a composition constraint)
6	РНА	Single-scattering Phase Function
7	MEE	Mass Extinction Efficiency
8	RRI	Real Refractive Index

Meteorologisk institutt

Kahn et al., BAMS 2017

Aerosol variables vs capabilities of different instrument suites

	Doolvoottor Lidor	HS	RL	Delevimeter	Polarimeter	Polarimeter	Polarimeter						
Geophysical Variable	Backscatter Lidar	$2\beta + 1\alpha$	$3\beta + 2\alpha$	Polarimeter	& BSL	& 2β + 1α	& 3β + 2α						
Aerosol extinction profile	-	\checkmark	+		$\sqrt{(\text{TBD})}$	+	++						
Near-surface aerosol extinction profile	-	\checkmark	+		—	\checkmark	++						
Aerosol column absorption				$\sqrt{(\text{TBD})}$	\checkmark	+	++						
Aerosol absorption profile					?	\checkmark							
Aerosol size distribution parameters profile		_	\checkmark		?	?	?						
Aerosol (column non-sphericity) non- spherical AOD	$\sqrt{(TBD)}$	\checkmark	\checkmark	$\sqrt{(\text{TBD})}$	\checkmark	\checkmark	\checkmark						
Aerosol (non-sphericity profile) non- spherical extinction profile	√ (TBD)	\checkmark	\checkmark		\checkmark	\checkmark	+						
Aerosol column complex refractive index				-	\checkmark	+	++						
	 Less capability than ACCP Minimum requirement √ Meets or somewhat exceeds Minimum (advances on A-train/PoR 												

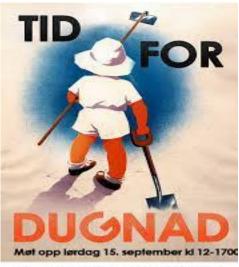
+ Significantly exceeds Minimum

Proposal for new Aerosol ECVs

<u>Maintain</u> AOD, SSA and $F_z(\sigma_{ep})$ as ECVs Add notes insisting upon the importance of AAOD, Fine/Coarse AOD.

4 Aerosol size-related ECV

Particle Number (Volume) Size Distribution. In-situ and column integrated. Note indicating that Extinction Angström Exponent can be used as proxy.


GAW SAG

Paolo Laj

5 Aerosol cloud forming potential-related ECV Number of Cloud Condensation Nuclei at a given supersaturation is key to first-order (twomey effect) indirect effect

6 Aerosol chemical composition-related ECV Mass-fraction of inorganic/organic/Black-Carbon and dust aerosol. Note saying Absorption Angström exponent can be used under some assumption. Also complex refractive index under known RH

Tar after in isosphreid nyingsphreidings, komplett med verseutdyr for de mervinglete av os, fe eller oppslag på boetver, vermatte

Meteorologisk institutt

- AeroCom 2019 workshop presentations on web (please react when we send around draft)
- SSC Mian, Stefan, Kostas, Bjørn, Gunnar, Michael, +????
- Responsibility Telecons, Paper & Experiment follow-up, Next Workshop, Comm
- Minutes will be send around to experiment/analysis responsibles
- Special telecons to discuss papers, experiments with larger rounds (please propose, SSC will organise)

Modellers: Document Models, Papers, Simulations... / Correct output of your model Data friends: produce accessible understandable benchmark datasets

"AeroCom" Papers 2019

Set up a google doc sheet => extract to pdf,twitter,email...

with Title + Lead author/contact + submission deadline ambition + 3 bullet points More detailed outlines by end of October (tables, figures, structure)

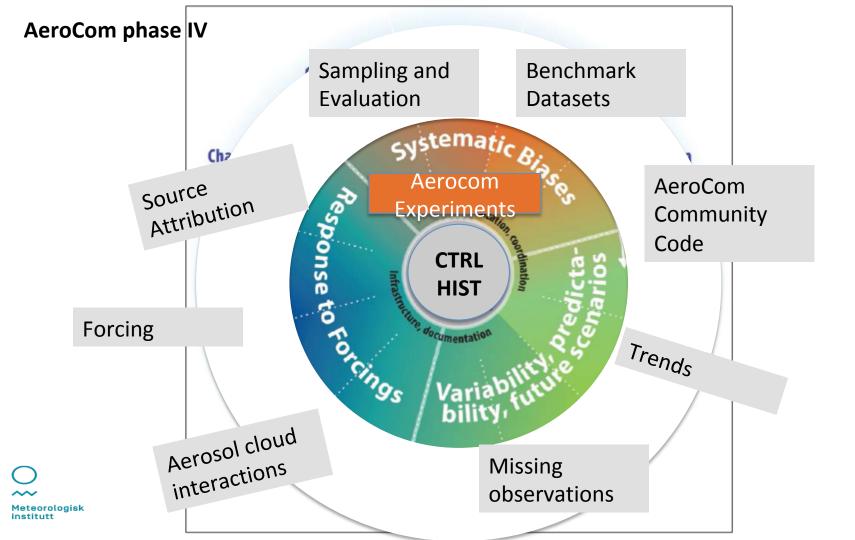
Focus telecons for papers 2019 (SSG initiates):

Evaluation PD and Control

Forcing history and Control (ERF and direct effect)

Trends

Absorption


Aircraft evaluation

In-situ and hygroscopcity

Dust

Indirect effects

Measurement Requirements paper(s)

AeroCom model experiments:

- Sign up sheet of participating in model experiments and timeline
- Maximize the benefits and optimize the model simulation strategy
- Example below: one BASE simulations, specific purturbations

Experiments:														Base Perturbation Runs:																			
Short Name	1750	1850	1980	1990	1995	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017 20	18 (BASE	BASE = simulation with all emissions)								
HIST*																																	
UTLS																								BASE	VOL0	FIR0	ANT0	EAS0	SAS0				
Aircraft-Baseline																								BASE									
Aircraft-ATom																								BASE	ExpA	ExpB	ExpC	ExpNuc	ExpSO2 Explon	ExpTer	ExpOrg		
VolcACI																								CRTL	/ Hol-CE	Kil-CE							
BBEIH																								BASE	BBIH	NOBB	BBEM						
DustSR															?	?	?	?						BASE	various	regional	tags						

Common BASE simulations with un-common perturbations:

*1980-2015

Suggested near future effort:

- Effectively diagnose model differences:
 - Implement the CO50 transport tracer (required, min effort)
 - Implement the removal tracer Pb-210 (recommended)
 - A generic land source tracer with specified loss? (e.g. for dust transport diagnostics)
 - Hygroscopic growth and water fraction in AOD
 - Benchmark dataset list
- Collaborative effort between AeroCom and AeroSAT:
 - Dust AeroSAT provides synthesized dust dataset for AeroCom model evaluations, comparing model and IASI 10 um AOD
 - Clear sky AOD and flux: finding a common ground/approach to compare the same fruit
 - Aerosol simulator for proper comparison between model and satellite data (limitations of type of satellite data that can be applied with the simulator?

Meteorologis institutt

Next AeroCom workshops

- New York City :: 2020 *Tsigaridis*
- Oslo/Stockholm :: 2021/2022 *Schulz/Storelvmo/Zieger*
- Nanjing :: 2021/2022 Minghuai Wang

AeroCom workshop 2019 Special thanks

Carlos Pérez Garcia-Pando, Alexis Chantasack , Sara Basart, Maria Goncalves, Martina, Dene, Jeronimo Escribano, + BSC team ++ Stefan Kinne

AeroSAT

AeroCom