Aerosol layer height climatology derived from synergistic use of UV-VIS sensors

Jaehwa Lee

University of Maryland and NASA GSFC

N. Christina Hsu, NASA GSFC Woogyung V. Kim, NASA GSFC / UMD Andrew M. Sayer, NASA GSFC / USRA Colin J. Seftor, NASA GSFC / SSAI

Why Aerosol Height?

- Radiative effects:
 - Vertical profile of radiation field
 - Aerosol-cloud interactions
- Air quality:
 - Link between total column vs. surface-level aerosol concentrations
 - Different altitudes for different targets, i.e., surface air quality or aviation safety
- Aerosol transport modeling:
 - Indicative of long-range transport
 - Model evaluations for injection height

Aerosol Height from Space

Spaceborne lidar

Multi-angle imaging

Moroney et al. (2002), Nelson et al. (2013)

Beam width: 70 m at surface Provides detailed vertical structure Saturation for thick aerosol layers Swath width: ~400 km Provides a single layer height

The objective is to provide the height of UV absorbing aerosols with daily global coverage using passive UV-VIS sensors

Aerosol Height from Space

Oxygen A/B-band (e.g. Sanders et al., 2015; Xu et al., 2019) 2016-04-17 11:23 UTC

Aerosol Single-scattering albedo and Height Estimation (ASHE)

- Synergistic use of MODIS, OMI, and CALIOP
- UVAI ~ f(AOD, SSA, ALH)
- Applied to smoke aerosols only
- Smoke detection based on UVAI and Ångström exponent
- Jeong and Hsu (2008)

ASHE Extension to Nonspherical Dust

ASHE without CALIOP

- Retrieves aerosol layer height and SSA using UVAI and 412 nm TOA reflectance
- AOD and surface reflectance constrained by VIIRS Deep Blue product
- Aerosol optical model:
 - Bimodal lognormal distribution
 - 550 nm fine-mode AOD fraction
 - Absorption AE
 - Nonspherical dust

ASHE without CALIOP

Evaluation against CALIOP over N. America

Smoke Altitude over Major Source Regions

2012-2017	N.America	S.America	S.Africa	SE Asia	Siberia
Number of smoke pixels	598483	85077	1563502	233594	948922
Percentage above PBL	79%	25%	37%	36%	72%
Percentage above SAL	38%	9%	9%	8%	27%

AOD-PM2.5 relationship for smoke aerosols

Summary and Conclusions

- Synergistic use of UV-VIS sensors or sensors with similar capability (TROPOMI, OCI/PACE, etc.) have potential to provide daily global aerosol height of biomass burning smoke and mineral dust.
- Present algorithm can run without CALIOP observations, significantly improving data coverage and facilitating the implementation in the operational processing system.
- Comparison against CALIOP over North America suggests retrieval accuracy within ~1-1.5 km when considering the entire transect for wildfire smoke cases.
- Since ASHE utilizes Level 2 aerosol products, it can directly benefit from future improvements to the data set. Improvements in AOD from V2 VIIRS DB and C7 MODIS DB are underway.
- The ASHE retrievals can inform Deep Blue of appropriate aerosol model and height for better AOD retrievals, which can in turn improve the performance of ASHE.

Saharan Dust Transport

