Reflections on using Satellite Data as Model Constraints

Matthew Christensen, University of Oxford

AeroSAT, Barcelona, 2019

Reflections on using Satellite Data as Model Constraints (for quantifying aerosol radiative forcing)

Matthew Christensen, University of Oxford

AeroSAT, Barcelona, 2019

Aerosol Radiative Forcing

- Bulk of uncertainty stems from cloud sensitivities constructed from linear statistics of the regression between retrieved cloud and aerosol properties.
- Forcing is directly proportional to anthropogenic aerosol fraction so constraining this term is also essential.

Why is the uncertainty on cloud sensitivity so large?

: A Equative differve effect F:: incomming solar flux : Coloded fractions, ; : Coloded tractions, ; : Coloded to be to do : Aidine idvate to attach Nd: choose to concentration AOD: a crosol optical depth anth: anthropogenic gerosol

Cloud Sensitivity – ACI Adjustments

Ship & Volcano Tracks

• LWP responses can be positive or negative

• No impact on LWP observed

Synoptic Scale LWP Response - meteorology

• LWP decreases on average

Synoptic Scale Cloud Fraction Response

Significant increase in cloud fraction

Pathways to Reduce Uncertainty

Better aerosol & cloud retrievals

• Clear-sky pixels

- CCN retrievals from high-precision multiangle polarization measurements (Mishchenko et al. 1997, Hasekamp et al. 2019)
- Remove 3D effects and cloud contamination near clouds (Christensen et al. 2017)

Cloudy-sky pixels

• Relate CDNC to CCN through adiabatic cores (Rosenfeld et al. 2019)

Account for confounders/mediating variables

- Mediate cloud responses by relative humidity (Gryspeerdt et al. 2016, JGR)
- Stratify cloud responses by precipitation and meteorology (Chen et al., 2014)

Geostationary satellite observations

• Lagrangian trajectories to connect cloud to aerosol history and precipitation changes.

Natural Laboratories to improve process-scale understanding

- Quantify perturbations from known aerosol sources occurring in similar meteorology
- Ship, volcano industrial and megacity tracks (Christensen et al., 2011; Toll et al. 2019)

Challenges

• Aerosol-cloud collocation

▹ Spatial size of domain is critical to ensure the cloud and aerosol are in the same location (Grandey and Stier, 2010)

CAPA to link individual cloud pixels to nearest *trustworthy* aerosol retrieval

➢Trajectory method linking aerosol to cloud (Breon et al. 2002).

• Aerosol composition and vertical profile

Black carbon aerosol layers above cloud induce semi-direct effects (Wilcox, 2010)

MODIS standard retrieval products contain retrieval biases in cloud properties under smoke layers (Meyer et al.)

CALIPSO is useful but may have difficulty retrieving semi-detached aerosol layers

▶ ORACLES show that aerosol mixing with cloud can have different effects (Diamond et al. 2018)

• AOD threshold retrieval considerations

MODIS suitable range is 0.06 – 1 and clouds are most sensitive in clean conditions below 0.06

➢MISR might be better

CALIPSO has similar difficulty retrieving optically thin layers

• Quasi-buffered cloud states

Feedbacks between entrainment and precipitation buffer cloud albedo effect (Stevens and Feingold, 2008).

Cloud Retrievals

Source: Wallace and Hobbs, 2006

Adiabaticity – assumed adiabatic in most Sc clouds

$$N_{eff} = \sqrt{2}B^{3}\Gamma_{eff}^{1/2}\frac{LWP^{1/2}}{r_{e}(h)^{3}}$$

LES experiments LWP differs by 2x depending on the degree of sub-adiabaticity (Miller et al. 2016).

Plane parallel clouds - 1D radiative transfer

Broken cloudy areas need constraints!

<u>Uncertainty</u> in CDNC is between **50 – 80%** (Grosvenor et al. 2018).

Into the Twilight Zone

Koren et al. (2007), GRL

- Clouds are surrounded by the "twilight zone"
 - Belt of forming and evaporating cloud fragments and hydrated aerosols extending tens of km.
- To what extent does the twilight zone influence estimates of the aerosol indirect forcing?
 - In situ estimates from Ted Van Hoeve 2016
 - Satellite based estimates from Christensen et al. 2017, ACP

Aerosol Retrievals Cloud-Aerosol Pairing Algorithm (CAPA)

a) 0.64-µm Reflectance AOD 0.2 0.3 0.1

0.64 µm reflectance

0.4

aerosol optical depth

0 0.1

distance to nearest

filtered aerosol pixels

0.4 AATSR MODIS rosol al depth 0.3 number Aer(optical 0. 0.0

Californian

c) CAPA-L2_15KM -0.28+0.46 W/m

Aerosols near cloud are affected by: 1) cloud contamination, 2) radiation scattered by 3D clouds and 3) humidification/aerosol swelling.

Christensen et al. (2017), ACP

Satellite-Model Comparison

Cloud Water Path Sensitivity Satellite-Model Comparisons 2006 – 2010; 60S° – 60° N (Ocean only)

Satellite-Model Comparison

Cloud Water Path Sensitivity Satellite-Model Comparisons 2006 – 2010; 60S° – 60° N (Ocean only)

Natural and Anthropogenic Laboratories

Ship and Volcano Track Responses

• HADGEM LWP response shows no dependence on meteorology.

Cloud Albedo Comparison

- Albedo calculation: regional-scale (colors) based on CERES Ship tracks based on MODIS BUGSrad
- Holuhraun eruption data from Malavelle et al. (2017).
- Ship tracks and global-scale A-train observations indicate that cloud albedo is strongly influenced by *macrophysical* (LWP) changes associated with increased aerosol loading.

Cloud Albedo Comparisons

Cloud Albedo Comparisons

Feedback, Confounder or Satellite Retrieval Error?

• LWP vs CDNC relationship "flattens" when the emission rates increase.

Future Satellite Missions

- Plankton, Aerosols, Clouds, ocean Ecosystems (PACE) mission (2022)
 - I. Ocean Color Instrument (hyperspectral radiometer 350 885 nm).
 - II. Spectro-Polarimeter for Planetary Exploration-1 (hyperspectral; 100 km narrow swath)
 - III. Hyper Angle Rainbow Polarimeter-2; prism beam splitting (440, 550, 670, and 870 nm; 1500 km broad swath; 2.5 km pixel from 10- 60 different angles)
- Multi-Viewing Multi-Channel Multi-Polarisation Imaging (3MI) (2022)
 - 12 spectral channels, 14 angles, 2200 km swath at 4 km resolution, polarization (-60°, 0°, and +60°)
- EarthCare (2012 2021???); ACCP
 - I. ATLID ESA 354.8 nm depolarization lidar
 - II. CPR -36 dBZ sensitivity, 500 m horizontal and 100 m vertical resolution doppler cloud profile radar
 - III. MSI 7 channels, 150 km swath, 500 m resolution
 - IV. BBR broadband radiometer; 10 km resolution
- Meteosat next generation geostationary satellites
 - I. Four Imaging Satellites (MTG-I) (20 years of operational services expected)
 - II. Two Sounding Satellites (MTG-S) (15.5 years of operational services expected)