

Proudly Operated by Battelle Since 1965

Regime-dependent ERF_{aer} for different types of clouds in GCMs

Kai Zhang (kai.zhang@pnnl.gov), Jian Sun, Shixuan Zhang

Pacific Northwest National Laboratory, WA, USA.

Contributors: Steve Ghan, Minghuai Wang, Xiaohong Liu (AeroCom indirect3 experiment design) Phil Rasch, Hui Wan (composite analysis and hindcast approach) AeroCom modelers and coordinators (model data providers)

Recap: AeroCom IND3 experiments

- Experiments designed to look at ERF_{aero} for both liquid and ice clouds
- 10+ global aerosol-climate models (CH/DE, JP, UK, USA)
- Horizonal winds nudged towards reanalysis (Zhang et al., 2014)
- High-frequency data available for cloud (e.g. LWP, IWP) and aerosol (e.g. CCN, IN) properties, as well as microphysics process rate.

Cloud type/phase and associated dynamical regimes

Proudly Operated by Battelle Since 1965

Modified from : https://earthobservatory.nasa.gov/Features/DelicateBalance

Optically thick liquid and ice clouds

ERF_{aer}: **TOA LW Flux Change (PD-PI)**

Proudly Operated by Battelle Since 1965

ΔFLNT

4

A deep dive into the high-frequency data

Proudly Operated by Battelle Since 1965

Two regions defined for the Hovmöller diagram (time vs. longitude)

Satellite-retrieved and reanalysis OLR

OLR: Mid-latitude (25N-50N, PD)

OLR: Tropics (10S-10N, PD)

Pacific Northwest NATIONAL LABORATORY

Proudly Operated by Battelle Since 1965

a) NOAA-HIRS b) ERA-Interim c) E3SMv1 d) AM3

e) ECHAM6-HAM2f) GEOS-5g) HadGEM3h) CAM5.3

OLR_{PD} - OLR_{PI} : Mid-latitude

October 8, 2019

Blue region: 25N to 50N, 150E to 60W

10

Red region: 10S to 10N, 60E to 90W

ω_{500} is overall well constrained, but less well in tropics

Proudly Operated by Battelle Since 1965

Daily mean snapshots

PD

PI

Mid-latitudes

Sun and Zhang et al. (2019) JAMES under revision

Dynamical regimes and decomposition

Proudly Operated by Battelle Since 1965

$$\bar{C} = \int_{-\infty}^{\infty} P_{\omega} C_{\omega} \mathrm{d}\omega$$

$$\overline{\delta c} = \int_{-\infty}^{+\infty} C_{\omega} \delta P_{\omega} d\omega + \int_{-\infty}^{+\infty} P_{\omega} \delta C_{\omega} d\omega + \int_{-\infty}^{+\infty} \delta P_{\omega} \delta C_{\omega} d\omega$$
dynamic thermodynamic co-variation

Bony et al. (2004)

Dynamical regimes and decomposition

Proudly Operated by Battelle Since 1965

$$\bar{C} = \int_{-\infty}^{\infty} P_{\omega} C_{\omega} \mathrm{d}\omega$$

$$\overline{\delta c} = \int_{-\infty}^{+\infty} C_{\omega} \delta P_{\omega} d\omega + \int_{-\infty}^{+\infty} P_{\omega} \delta C_{\omega} d\omega + \int_{-\infty}^{+\infty} \delta P_{\omega} \delta C_{\omega} d\omega$$

$$\frac{dynamic}{dynamic} \frac{dermodynamic}{due to nudging} \frac{dominant}{due to nudging} \frac{dominant}{due to nudging}$$

Bony et al. (2004)

Regions with low/high cloud appearance

Regions with low/high cloud appearance

Pw: PDF of ω_{500} (PD)

Conditionally sampled LWCF (at given ω_{500})

Pw-weighted ERF_{aer}: d(LWCF*Pw)

Dynamical regimes and decomposition

Proudly Operated by Battelle Since 1965

$$\bar{C} = \int_{-\infty}^{\infty} P_{\omega} C_{\omega} \mathrm{d}\omega$$

$$\overline{\delta c} = \int_{-\infty}^{+\infty} C_{\omega} \delta P_{\omega} d\omega + \int_{-\infty}^{+\infty} P_{\omega} \delta C_{\omega} d\omega + \int_{-\infty}^{+\infty} \delta P_{\omega} \delta C_{\omega} d\omega$$
dynamic thermodynamic co-variation

Bony et al. (2004)

Dynamical, thermodynamical, and covariation terms

Dynamical, thermodynamical, and covariation terms

Further decomposition for different cloud phases

Proudly Operated by Battelle Since 1965

Ice phase only

ECHAM6-HAM2

E3SMv1 HadGEM3

CAM5

Overlapped ice/liquid clouds are NOT considered here.

- Nudged IND3 simulations show reasonable hindcast skill over midlatitude, but less well-constrained in tropics
- ERF_{aer} is highly dependent on dynamical regimes and cloud phase.
- Much more interesting (some are weird) results will be shared with co-authors soon.