VolcACI Experiment Update

F. Malavelle, T. Yuan, A. Laakso, T. Takemura, D. Neubauer, I.-H. Karset, D. Watson-Parris and many more!

Aerocom 2019 annual meeting, Barcelona

VolcACI: Rationale

(volcanoes, ship-tracks, industrial tracks) suggest a lesser impact of aerosols on liquid clouds than what is traditionally simulated by GCMs.

e.g. Toll et al., (2017,2019); Malavelle et al. (2017); Sato et al. (2018); Stephens et al. (2019)

Natural experiments

VolcACI overview

- Evaluate Aerosol-Cloud Interactions (ACI) in CMIP6 class models using the Holuhraun & Kilauea eruptions framework.
- Provide constraint on ACI estimates for this new generation of models.

VolcACI Timetable

Kilauea (2008 & 2018)

Holuhraun (2014-15)

- Homogenising data from first submissions (6 MODELS) - Starting analysis of Holuhraun runs

2021

CONSTRAIN (Horizon 2020) just kicked off

Kilauea: 2008 vs 2018

- Emissions: 2018 >> 2008. Confirmed by initial tests already carried with the NASA GISS model.
- Kilauea 2008 mostly disturbed the liquid phase.
- Kilauea **2018** disturbed <u>both</u> liquid and ice phases.

MINX retrieved plume height (the MISR team)

Holuhraun: earlier work

1 - Models tends to agree on the Twomey effect *R*

2 - Models with a significant large aerosol 2nd indirect effect (C) are likely in error.

But - We still have no understanding why !

Identification of error essential for accurate future climate estimates.

VolcACI Objectives

1 - Could GCMs capture the magnitude of ACI during the eruptions?

2 - Quantify model responses to the volcanic perturbation and assess where models (dis)agree ACI metrics

estimates Process Based Metrics

Aerocom wiki

AeroCom

AeroCom WIKI home

Common AeroCom phase III Diagnostics Request 2019

The diagnostics for most of the experiments mentioned on this wiki page are put together here:

AeroCom experiments diagnostics sheets 28.2.2019

aer2dmon aer3dmon aer2d3hr aer3dhr aerxd6hr

3 - Identify biases in models and parameterisation contributing to spread in ACI

Methods: Disentangling the aerosol effect

'Long-term' nudged CTRL required to separate the influence of meteorology from the aerosol perturbation: $\Delta reff \sim \partial reff.\delta m + \partial reff.\delta a$

Radiation (forcing)

Cloud properties - LWP

AQUA C6.1

ΔLWP mean=4.237 [no unit]

ECHAM-HAM

September 2014: WITH - WITHOUT Eruption

Δlwp mean=6.899 [g.m-2] September: 2014 - Clim

∆lwp mean=-1.803 [g.m-2]

September 2014: WITH - WITHOUT Eruption

Δlwp mean=8.699 [g.m-2]

 Δ lwp mean=-1.206 [g.m-2]

September 2014: WITH - WITHOUT Eruption

lwp zonal mean anomalies for September 2014

September 2014

-40

-60

1σ

50

45

55

September 2014: WITH - WITHOUT Eruption

60

OLSO-CAM

Latitude (°N)

65

70

75

80

LWP zonal mean anomalies for September 2014

Δlwp mean=10.979 [g.m-2] September: 2014 - Clim

∆lwp mean=15.346 [g.m-2]

 $\Delta LWP [g.m-2]$

September 2014: WITH - WITHOUT Eruption

Δlwp mean=4.392 [g.m-2] September: 2014 - Clim

 Δ lwp mean=-4.632 [g.m-2]

Latitude (°N)

MIROC-

Cloud properties - LWP

ECHAM-HAM

September 2014: WITH - WITHOUT Eruption

Δlwp mean=6.899 [g.m-2] September: 2014 - Clim

Δlwp mean=-1.803 [g.m-2]

-54

-36

AQUA C6.1

September: 2014 - Clim

ΔLWP mean=4.237 [no_unit]

September 2014

UKESM1

OLSO-CAM

$\Delta LWP [g.m-2]$

Cloud properties - Reff

AQUA C6.1

ECHAM-HAM

September 2014: WITH - WITHOUT Eruption

 Δ reffclwtopincloud mean=-0.236 [micron]

ΔrE mean=-1.090 [microns]

Δreffclwtopincloud mean=-0.349 [micron]

September 2014

UKESM1

∆reffclwtop mean=-0.601 [micron]

∆reffclwtop mean=-0.663 [micron]

OLSO-CAM

September 2014: WITH - WITHOUT Eruption

September: 2014 - Clim

∆reffclwtopincloud mean=-1.200 [micron]

0.00	1.05	2.10	3.15

Aerosols - od550aer

ECHAM-P3

0.1125 0.2250 0.3375 0.4500 0.5625 0.6750

0.0000

September 2014

ECHAM-SALSA

ECHAM-HAM

od550aer mean=0.213 [no_unit]

September 2014 - Hol-CE

Some implication and future work direction

These case studies are also useful to test aerosol representation in models with extreme emissions

1 - Evaluate the volcanic plume lifecycle during transport: VolcTraj (see P. Kim & D. Partridge presentation)

2 - Identify mechanism responsible for the distribution of the plume - How does it affect forcing in the far field?

ERF - Clear Sky

Volcanoes as Giant ShipTracks

Both 'easy' to Aerosol observed and **SO**₂ (CCN) to model

SO₂ -> **OMPS** (SUOMI-NPP) Cloud -> MODIS (AQUA)

75°N -

70°N -

65°N

12

20°W

20°W

Can we observe any systemic changes between in/out plume? e.g. shift in 'cloud regime' ?

Aqua MODIS Cloud Fraction Liquid cloud fraction
Ice cloud fraction
Total cloud fraction

Summary

1 - Could GCMs capture the magnitude of ACI during the eruptions ?

models (dis)agree - ACI metrics

- estimates Process based Metrics
- **next 2/3 months** Finish analysing current submissions (6): Identify remaining issues and find fixes.

- By the end of 2019:

- Update all participants about potential alteration and provide details about (re)run (if applicable)
- Request running 2018 Kilauea.
- Request centre interested in participating to submit contributions.
- 2020 Full analysis (see above).
- **Mid 2020 -** Idealised runs with simplified plume model (Macv2SP & EASY Aerosols). Early 2021 - Early-draft summarising VolcACI results.

- 2 Quantify model responses to the volcanic perturbation and assess where
- 3 Identify biases in models and parameterisation contributing to spread in ACI

s://drive.google.com/drive/u/1/folders/1kDjywuf-DND2kiiQw3hsPav9SQka2uO

Thanks you for your Attention

o/aerocom/phase3

Volcanoes as Giant ShipTracks

Cloud properties - LWP

AQUA C6.1

μ Μ

October 2014

UKESM1

October 2014: WITH - WITHOUT Eruption

∆lwp mean=3.649 [g.m-2] October: 2014 - Clim

 Δ lwp mean=3.012 [g.m-2]

OLSO-CAM

Δlwp mean=8.702 [g.m-2] October: 2014 - Clim

Δlwp mean=12.119 [g.m-2] lwp zonal mean anomalies for October 2014

AQUA C6.1

HadGEM3-UKCA

reffclwtop zonal mean anomalies for September 20

NCAR-CAM5.4

reffclwtop zonal mean anomalies for September 20:

TERRA C6.1

September: 2014 - Clim

ΔrE mean=-1.021 [microns]

HadGEM3-CLASSIC

-1.05 2.10 -2.10 0.00 1.05 3.15 -3.15reffclwtop zonal mean anomalies for September 20 on) 2

Oslo-CAM5.3

September 2014

AQUA C6.1

rE zonal mean anomalies for October 2014

HadGEM3-UKCA

October: 2014 - With - Without

TERRA C6.1

October: 2014 - Clim

ΔrE mean=-1.019 [microns]

HadGEM3-CLASSIC

October: 2014 - With - Without

3.15

3.15

80

0.00

1.05

2.10

3.15

-1.05

-2.10

-3.15

Oslo-CAM5.3

reffclwtop zonal mean anomalies for October 2014 4

October 2014

AQUA C6.1

54

LWP zonal mean anomalies for September 2014 40 20 -20 1σ -6050 45 55 60 70 75 65 Latitude (°N)

HadGEM3-UKCA

NCAR-CAM5.4

TERRA C6.1

September: 2014 - Clim Image: 2014

HadGEM3-CLASSIC

Oslo-CAM5.3

AQUA C6.1

HadGEM3-UKCA

NCAR-CAM5.4

lwp zonal mean anomalies for October 2014 60

TERRA C6.1

HadGEM3-CLASSIC

Oslo-CAM5.3

CESM-CAM5.4 (SEP) 2014 With lifetime effects 2014 With lifetime effects Area mean = 18.818 g.m⁻² Area mean = -1.088 μ m With minus Without With minus Without 80N 70N 70N 60N 60N 50N -5 -4 -3 -2 -1 0 60W -40 -20 0 20 40 60W 30W 30E 30W 30E 2014 Without lifetime effects 2014 Without lifetime effects Area mean = 0.353 g.m⁻² With minus Without Area mean = -1.300 μ m With minus Without 80N 70N 70N 60N 60N 50N 30E -5 -4 -3 -2 -1 0 30E -40 -20 0 20 40 60W 30W 60W 30W Pre-Industrial with lifetime effects Pre-Industrial with lifetime effects Area mean = -1.236 μ m Area mean = 20.366 g.m⁻² With minus Without With minus Without 2/2 60N 30E -5 -4 -3 -2 -1 0 30E -40 -20 0 20 40 30W 60W 30W △Cloud Liquid Water Path [g.m⁻²] 60 -40 -20 0 20 40 60 \triangle Cloud Effective Radius (Liquid) [μ m] -3.5 -2.5 -1.5 -0.5 0.5 1.5 2.5 3.5

-60

SWITCHING OFF 'LIFETIME' EFFECT (i.e. fixed Nd in AutoConversion)

