Dust Indirect Effects by Glaciating Mixed-phase Clouds

Xiaohong Liu, Yang Shi (Texas A&M University)

The role of dust

- \triangleright Dust is one of the most abundant aerosol species in the atmosphere in terms of emitted mass [Forster et al., 2007].
- \triangleright Dust has important climatic effects
	- \triangleright Scattering and absorbing solar and terrestrial radiation
	- \triangleright Influencing cloud radiative and microphysical properties as CCN and ice nucleating particles (INPs)
		- Dust is the most dominant INP at T<-15 ℃
	- \triangleright etc.

 $\scriptstyle\sim$

Ice nucleation is important for radiation and precipitation formation in mixed-phase clouds

Koop and Mahowald et al. 2010

How ice crystals are formed?

Ice nuclei. . *Insoluble/partially insoluble aerosol particle (~10-3 – 10-5 of aerosol population) Super-cooled solution droplet / cloud droplet Ice crystal*

Ice nucleation parameterizations in mixed-phase clouds

Classical Nucleation Theory (CNT)

Dust and Black carbon as INP

Immersion freezing, contact freezing, and deposition nucleation

Nucleation rate

Hoose et al. 2010; Wang et al., 2014 https://www.linseis.com/en/properties/contact-angle/

Ice nucleation parameterizations in mixed-phase clouds

Empirical Method

DeMott et al. 2015 – Immersion freezing (dust)

$$
\overline{N_{INP}(T_k)} = (cf) \left[(n_{a>0.5\mu m})^{(\alpha(273.16 - T_k) + \beta)} exp(\gamma(273.16 - T_k) + \delta) \right]
$$

na>0.5μm number concentration of dust particles larger than 0.5 μm

DeMott et al., 2015

Niemand et al. 2012 – Immersion freezing (dust)

$$
N_{INP}(T_k) = N_{to} S_{ae} \exp(-0.517(T_k - 273.15) + 8.934)
$$

Ntot dust number concentration Sae dust surface area

Niemand et al., 2012

DOE's Energy Exascale Earth System Model (E3SM)

The Bergeron process is tuned down by a factor of 10 in both model versions.

Model Experiments

Runtime period: 2007.01 to 2009.12

Meteorology: Wind components U and V nudged to MERRA2 data **V1 resolution:** 1 degree, 72 vertical levels **V0 resolution:** 1 degree, 30 vertical levels

Zonal average dust concentration

E3SM v1 E3SM v0

The Arctic dust concentration is higher in E3SM v1 than v0, which indicates more efficient dust transport in E3SM v1.

Total wet removal rate

Wet removal rate $=$ Wet deposition flux / Burden

The wet removal is stronger at mid-latitudes in E3SM v0.

Dust extinction vertical profiles: Comparing with CALIPSO

E3SM v1 better simulates high latitude dust, but it is still underestimated when comparing with CALIPSO.

Shi and Liu (2019, GRL)

Arctic INP comparison

E3SM v1 better simulates INP concentration than E3SM v0 at the Arctic. Shi and Liu (2019, GRL)

Dust indirect effects by acting as INPs Sensitivity experiments

All the sensitivity experiments use E3SM v1.

Condensed water and **Cloud forcing differences** $DEMv1_x10 - DEMv1_x0$ (E3SM v1)

Shi and Liu (2019, GRL)

Cloud forcing difference: All compared with "x0" cases

Dust INPs induce a global net warming cloud effect. NH mid-latitudes: warming; Arctic: cooling

Local dust emissions in the Arctic

Dust Concentration Comparison
²⁰³

INP concentration comparison at the Arctic

Conclusions

- **E3SM v1 better simulates high latitude dust than v0. However, it is still underestimated comparing with CALIPSO.**
- **Models underestimate INPs concentrations at high latitudes, though improvements are seen in E3SM v1.**
- **Dust induces a warming cloud effect (0.05 - 0.26 W m-2 on global mean) by acting as INPs through reducing LWP.**
- **The dust warming effect is located predominantly in the NH midlatitudes, while a cooling effect is found in the Arctic.**
- **Caveat: Dust from high latitude sources may play an important role in Arctic mixed-phase clouds.**

Dust extinction vertical profiles: Comparing with CALIPSO

E3SM v1 better simulates high latitude dust, but it is still underestimated when comparing with CALIPSO.

Surface dust concentration comparison Alert, Canada (82.39oN, 62.3oW)

Soil erodibility map for EAM v1 and EAM v0

Both model versions miss dust emission from high latitudes, Northern Hemisphere.

Dust indirect effects by acting as INPs Sensitivity experiments

All the sensitivity experiments here use E3SM v1.

Arctic INP comparison

E3SM v1 better simulates INP concentration than E3SM v0 at the Arctic. Shi and Liu (2019, GRL)

INP comparison at the US

INP comparison in North China

China (Yin et al., 2012) \bullet

Cloud fraction difference: DEMv1_x10 – DEMv1_x0 (E3SM v1)

Cloud fraction difference: $DEMv1_x10 - DEMv1_x0$ (EAM v1)

Cloud fraction difference: $DEMv1_x10 - DEMv1_x0$ (EAM v1)

Seasonal cloud forcing difference: DEMv1_x10 – DEMv1_x0 (EAM v1)

Condensed water and **Cloud forcing difference**: DEMv1_x10_B10 – DEMv1_x0_B10 (E3SM v1)

Cloud forcing difference: All compared with "x0" cases

Dust INPs induce a global net warming cloud effect. NH mid-latitudes: warming; Arctic: cooling