Climate models miss most of the warming coarse dust in the atmosphere

Yemi Adebiyi and Jasper F. Kok*

Department of Atmospheric and Oceanic Sciences, University of California – Los Angeles (UCLA) *jfkok@ucla.edu 2019 AeroCom / AeroSat Meeting in Barcelona

Take-home points:

- The atmosphere contains ~ four times more coarse dust (D > 5 μm) than included in models
- Accounting for the missing coarse dust adds a direct radiative effect of 0.15 ± 0.06 W m⁻²

Collaborators: Chun Zhao, Akinori Ito, Pierre Nabat, David Ridley, and Yang Wang

Has dust exerted a substantial "missing" radiative forcing?

- Dust increased strongly in many regions since PI (Marx & Hooper, '18)
 - Might have globally ~doubled (Mahowald et al., '10; Marx & Hooper, '18)
 - Not represented well in current climate models
- Possibly substantial "missing" radiative forcing

Need to figure out net direct (and indirect) radiative effect of dust!

So does dust warm or cool? We don't know!

- Dust direct effect depends on dust sizes
 - Fine dust (D ≤ 5 um) cools by scattering SW
 - Coarse dust (D ≥ 5 um) warms by absorbing SW and LW
 - AeroCom phase 1 models indicated strong net cooling
- But AeroCom models have fine bias
 - Emit too much fine dust, not enough coarse dust
 - → Dust is less cooling, could net warm
- Large uncertainties remain!
 - Optical properties, especially LW (Di Biagio et al., 2017)
 - Models still greatly underestimate coarse dust (e.g., Ryder et al., 2019)

Several lines of evidence indicate that models greatly underestimate coarse dust

- Lidar measurements show models significantly underestimate coarse dust over North Atlantic (Ansmann et al., 2017)
- Coarse dust particles are found at greater distances than possible from model simulations (Maring et al., 2003, Weinzierl et al. 2017, van der Does et al. 2018).

Several lines of evidence indicate that models greatly underestimate coarse dust

- Lidar measurements show models significantly underestimate coarse dust over North Atlantic (Ansmann et al., 2017)
- Coarse dust particles are found at greater distances than possible from model simulations (Maring et al., 2003, Weinzierl et al. 2017, van der Does et al. 2018)..
- 3. Dozens of in situ measurements show much more coarse dust than simulated in model ensemble

Central questions:

• How much coarse dust is missing from climate models?

• What is the direct radiative impact of the missing coarse dust?

Joint experimental-modeling analysis to constrain 3D atmospheric dust size distribution

Our estimates agree better with measurements over different locations, height levels, and seasons → Almost complete elimination of bias

Most coarse dust mass is missing from (phase I) AeroCom models

Central questions:

• How much coarse dust is missing from climate models?

• What is the direct radiative impact of the missing coarse dust?

Joint experimental-modeling analysis to constrain dust direct radiative effect

Missing coarse dust adds ~0.1 W/m² warming

Accounting for missing coarse dust increases TOA warming by 0.15 ± 0.06 Wm⁻²

Still unclear if dust direct radiative effect net warms or cools!

Summary

- The atmosphere contains 17 ± 5
 Tg coarse dust
 - AeroCom (phase I) models account for only ~quarter of coarse dust
- Missing coarse dust adds 0.15 ± 0.
 06 W m⁻² of TOA direct warming
 - Helps remedy model underestimation of absorption
- Missing coarse dust implies
 important processes are missing
 from current models!

Take-home points:

The atmosphere contains ~ four times more coarse dust (D

> 5 μ m) than included in models

Accounting for the missing coarse dust adds a direct radiative effect of 0.15 \pm 0.06 W m⁻²

Okay, so WHY do models greatly underestimate coarse dust?

Not enough coarse dust emitted

- Likely because coarse particles are difficult to measure because of losses in inlet system for D > 5 um
- But measurements show that coarse dust deposits too quickly in models (e.g., Weinzierl et al. 2017). Why?
 - Dust is highly aspherical → models overestimate settling speed by ~20% (Huang, Kok et al., in prep)
 - Turbulence in dusty layers can slow settling (e.g., Gasteiger et al., 2017)
 - Excessive numerical diffusion due to insufficient vertical resolution (Zhang et al., 2018) and/or diffusive advective schemes (Ginoux, 2003)
 - Electrification of dust might counteract gravitational settling (Ulanowski et al., 2007)

Coarse dust warms atmosphere more than previously estimated

Radiative effect efficiency

- Radiative effect efficiency (REE) from simulations by four leading climate models
- SW REE increases with D (becomes more warming)
 - Greater fraction of extinction due to absorption
- LW REE positive, and increases as D → atmospheric window (~10 um)

Globally-averaged emitted dust size distribution

- 7 studies of size distribution of emitted dust
 - Limited dependence on wind speed and soil properties (Gillette, 1974; Kok, ACP, 2011; Rosenberg et al., 2014)
 - \rightarrow Each data set is a measure of globally-averaged emitted dust size distribution
- Most likely emitted size distribution and 95% confidence interval from maximum likelihood and bootstrap methods

Fine dust cools; coarse dust warms

Measurements also show giant dust (D > 20 um) important to radiative budget

