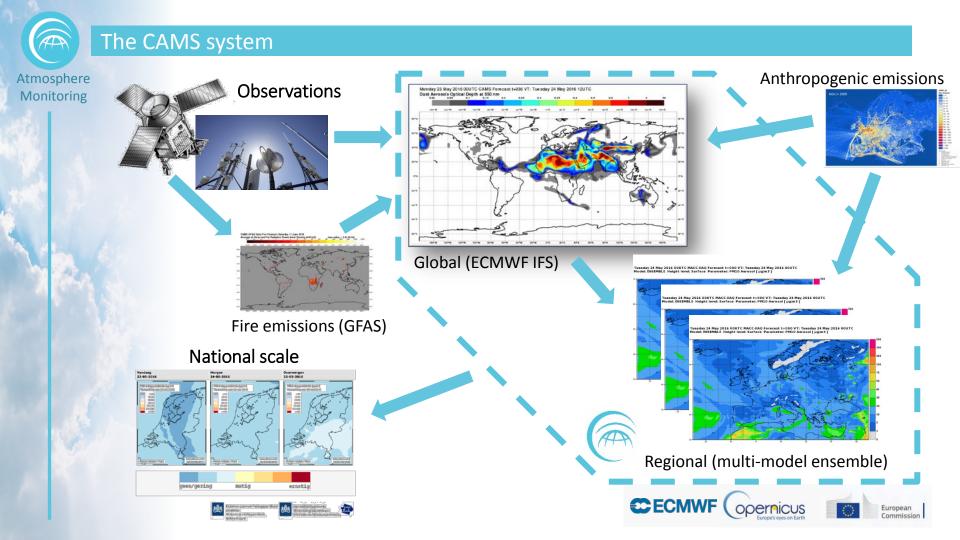
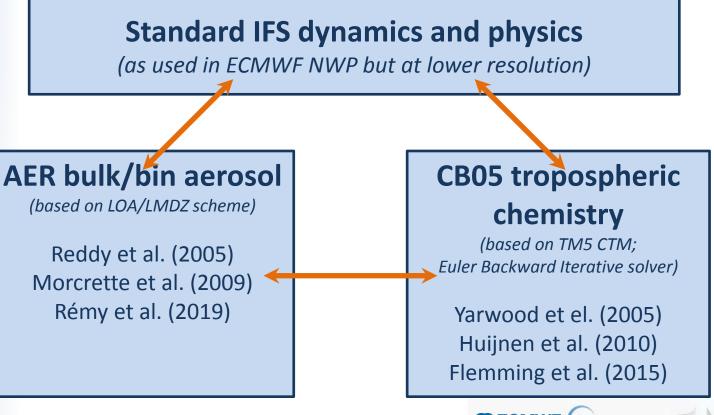
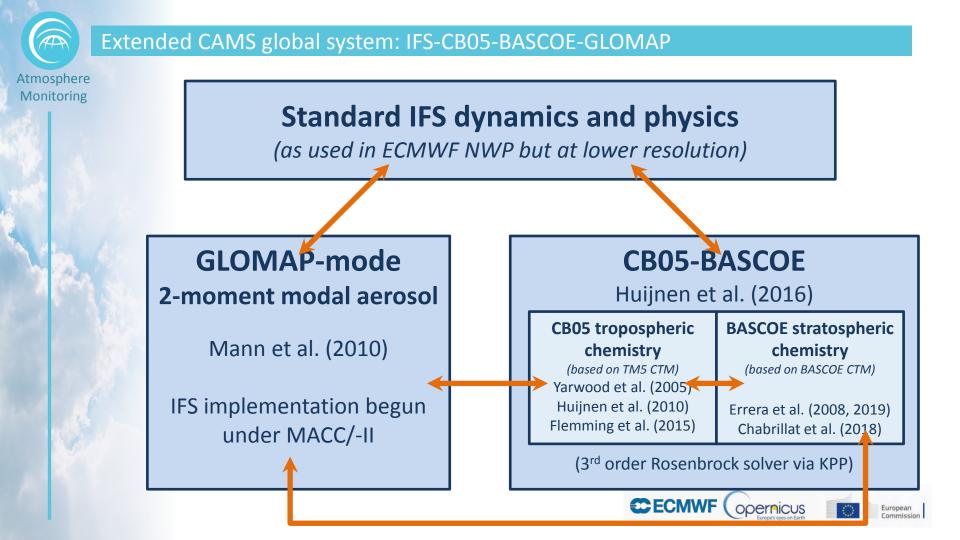
Introducing IFS-CB05-BASCOE-GLOMAP


Zak Kipling¹, Johannes Flemming¹, Vincent Huijnen², Samuel Rémy³, Simon Chabrillat⁴, Graham Mann⁵, Richard Engelen¹.

Atmosphere Monitoring


¹ECMWF; ²KNMI; ³HYGEOS; ⁴BIRA-IASB; ⁵U. Leeds

18th AeroCom workshop, Barcelona, Thursday 26 September 2019



Combining tropospheric and stratospheric chemistries

Tropospheric species (CB05)								
Pl	0	PAR	ACO2		O ₃	N ₂ O ₅		
C ₂ I	H_4	OLE	$IC_3H_7O_2$		ОН	Rn		
C ₂ I	H_6	ALD2	HYPROPO ₂		H_2O_2			
C ₂ H ₅	ЮH	ROOH	ROR		CO			
C ₃ I	Н ₈	PAN	RXPAR		CH ₂ O			
C ₃ I	H_6	ONIT	XO ₂		CH ₃ O ₂			
C ₅ I	Н ₈	SO ₂	XO ₂ N		CH ₃ OOH			
C ₁₀ H	H_{16}	DMS		-	CH ₄			
CH₃CC	осно	MSA	SO_4 $NO_3^{(A)}$	-	NO			
CH ₃ C0	CH₃	NH ₂		-	NO ₂			
CH ₃	ОН	NH_3	NH ₄		NO ₃			
HCO	ОН	C ₂ O ₃	Pseudo- aerosol species				HNO ₃	
MCC	ЮН	ISPD			HO ₂ NO ₂			

Combining tropospheric and stratospheric chemistries

Stratospheric species (BASCOE)						
0 ₃	N_2O_5		0	HCI	CH ₃ Br	CFC-115
ОН	Rn		O ^(1D)	HOCI	CH_2Br_2	HCFC-22
H ₂ O ₂			Н	CH ₃ Cl	CHBr ₃	HA-1301
CO			H ₂	CH ₃ CCl ₃	BrONO ₂	HA-1211
CH ₂ O			H ₂ O	CCL ₄	BrO	
CH ₃ O ₂			CH ₃	CIONO ₂	HBr	OCS
CH ₃ OOH			CH ₃ O	CINO ₂	HOBr	SO ₃
CH ₄			HCO	CIO	BrCl	H ₂ SO ₄
NO			CO ₂	OCIO	HF	Sulphur
NO ₂			N	CIOO	CFC-11	extensions
NO ₃			N ₂ O	Cl ₂ O ₂	CFC-12	
HNO ₃			Cl	Br	CFC-113	
HO ₂ NO ₂			Cl ₂	Br ₂	CFC-114	

Combining tropospheric and stratospheric chemistries

Atmosphere Monitoring

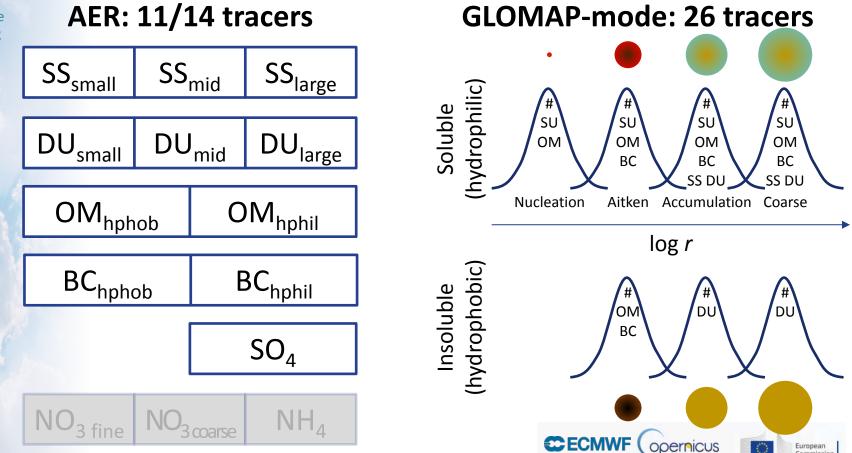
Tropospheric species (CB05)					
Pb	PAR	ACO2			
C_2H_4	OLE	IC ₃ H ₇ O ₂			
C_2H_6	ALD2	HYPROPO ₂			
C ₂ H ₅ OH	ROOH	ROR			
C_3H_8	PAN	RXPAR			
C_3H_6	ONIT	XO ₂			
C_5H_8	SO ₂	XO ₂ N			
$C_{10}H_{16}$	DMS				
CH₃COCHO	MSA	SO ₄			
	NH ₂	NO ₃ ^(A)			
CH ₃ OH	 NH₃	NH_4			
НСООН	C ₂ O ₃	Pseudo-			
мсоон	ISPD	aerosol species			

(whole-atm species)			
0 ₃	N_2O_5		
ОН	Rn		
H ₂ O ₂			
CO			
CH ₂ O			
CH ₃ O ₂			
CH ₃ OOH			
CH ₄			
NO			
NO ₂			
NO ₃			
HNO ₃			
HO ₂ NO ₂			

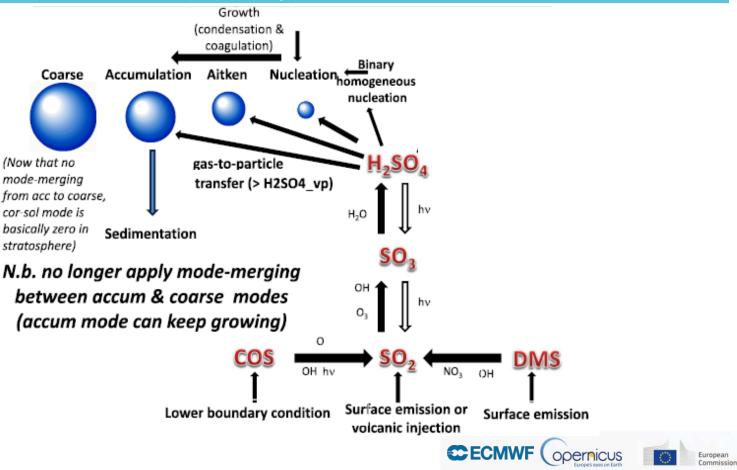
Stratospheric species (BASCOE)					
0	HCI	CH ₃ Br	CFC-115		
O ^(1D)	HOCI	CH ₂ Br ₂	HCFC-22		
Н	CH ₃ Cl	CHBr ₃	HA-1301		
H ₂	CH ₃ CCl ₃	BrONO ₂	HA-1211		
H ₂ O	CCL ₄	BrO			
CH ₃	CIONO ₂	HBr	OCS		
CH ₃ O	CINO ₂	HOBr	SO ₃		
НСО	CIO	BrCl	H ₂ SO ₄		
CO ₂	OCIO	HF	Sulphur		
N	CIOO	CFC-11	extensions		
N ₂ O	Cl ₂ O ₂	CFC-12			
Cl	Br	CFC-113			
Cl ₂	Br ₂	CFC-114			

OPERPICUS Europe's eyes on Earth

European Commission


CECMWF

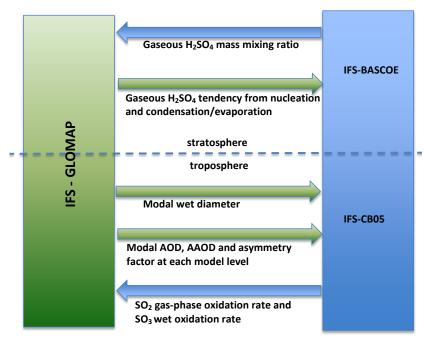
- CB05 reactions applied in troposphere
- BASCOE reactions applied in stratosphere
- Some reactions appear in both schemes
- Only one set of tracers, but some species are inert above or below the tropopause
- Lower boundary conditions prescribed for species only relevant in stratosphere
- "Chemical" tropopause defined:
 - troposphere where O3 < 200 ppb and CO > 40 ppb and p > 40 hPa
 - stratosphere elsewhere
- "Modified Band" photolysis in troposphere; LUT in stratosphere.



Atmosphere

Monitoring

Stratosphere-enabled GLOMAP as implemented in the IFS



Aerosol-chemistry interactions

Atmosphere Monitoring

- Stratospheric sulphur cycle has been implemented in IFS-CB05-BASCOE
- Stratospheric coupling of IFS-CB05-BASCOE with IFS-GLOMAP
 - Sulphuric acid from IFS-BASCOE
 - Sulphuric acid tendencies from nucleation and condensation from IFS-GLOMAP
- Tropospheric coupling of IFS-CB05 with IFS-GLOMAP
 - SO_x oxidation rate from IFS-CB05
 - Aerosol wet diameter from IFS-GLOMAP to compute Surface Area Density (SAD) for heterogeneous chemical reactions
 - Aerosol optical properties to compute photolysis rates

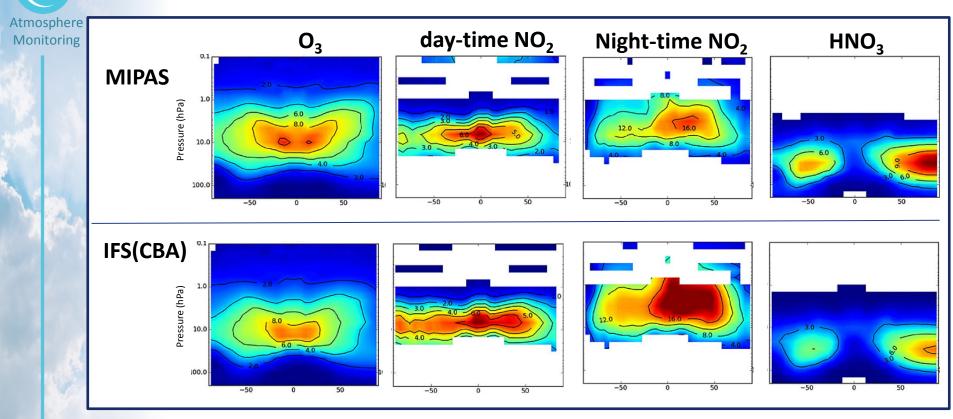
Furonear

Sulfur chemistry in IFS(CB05-BASCOE)

Atmosphere Monitoring

- Tropo (CB05): direct $SO_2 \rightarrow H_2SO_4$; DMS available; OCS neglected
- Strato (BASCOE): sulfur chemistry added specifically for ICBG, as Dhomse *et al.* (2014) with rates from JPL 2015, including 3 photolyses:

Reaction Rate expression			January tropical average
$OCS + O \rightarrow CO + SO_2$	$2.1 \times 10^{-11} \exp(-2200/T)$	10-4-	J-values (s⁻¹) for H₂SO₄ photolysis
$OCS + OH \rightarrow CO_2 + SO_2$	$7.2 \times 10^{-14} \exp(-1070/T)$		- 100
$SO_2 + OH \rightarrow SO_3 + HO_2$	Third-body reaction (3.3x10 ⁻³¹ ,4.3, 1.6x10 ⁻¹² , 0.)		10-3
$SO_2 + O_3 \rightarrow SO_3$	$3.0 \times 10^{-12} \exp(-7000/T)$	10-2-	Lyman-α photolysis
$SO_3 + H_2O \rightarrow H_2SO_4$	$8.5 \times 10^{-41} \exp\left(-\frac{6540}{T}\right) \cdot [H_2 O]$	Pressure (mb)	BASCOE sb15bs Old visible
$OCS + hv \rightarrow CO + SO_2$	(Burkholder et al. 2015)	10 ⁰ -	$\operatorname{cross}_{10^{\circ}}$ sections \rightarrow f cross sections
$H_2SO_4 + hv \rightarrow SO_3 + H_2O$	(see right)		Band- independent (Feierabend et al., 2006) -40
$SO_3 + hv \rightarrow SO_2 + O$	(Burkholder et al. 2015)	•	quenching and dependent

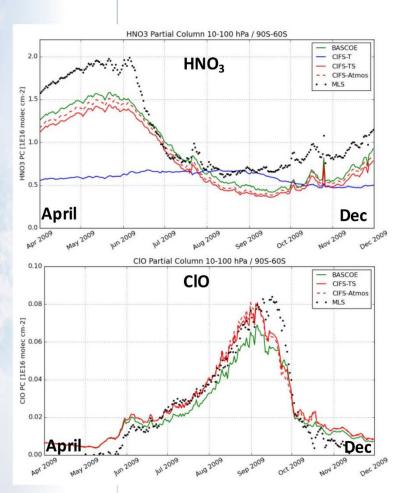

Photolysis of H_2SO_4 includes Lyman- α (Lane and Kjaergaard, 2008) and visible bands (Feierabend, 2006) with band-dependent quenching (Miller et al., 2007). Result in ICBG (blue line) similar to WACCM implementation (red line) except for lower values in upper strato.

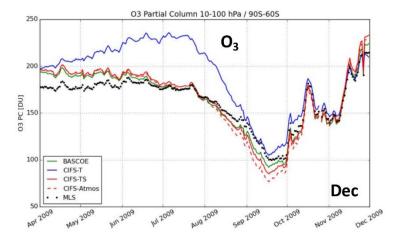
ECM

←No quenching

European

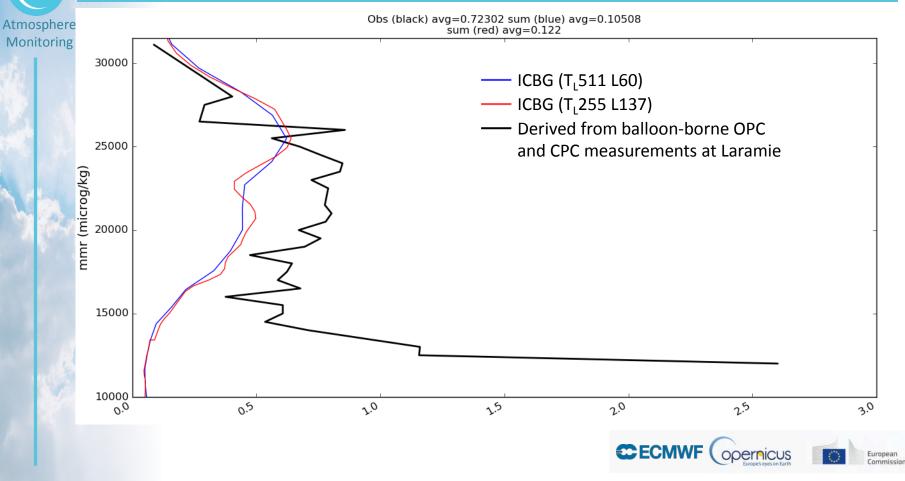
IFS-CB05-BASCOE stratosphere vs MIPAS


Monthly means for October 2009 (Huijnen et al., GMD, 2016)



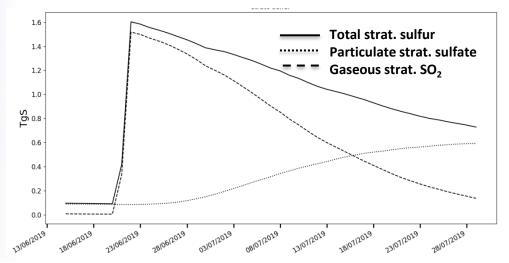
Stratospheric chemistry during ozone hole conditions

Atmosphere Monitoring


- C-IFS-CB05
- C-IFS-CB05-BASCOE
- BASCOE-CTM
- MLS observations

Huijnen et al., GMD 2016

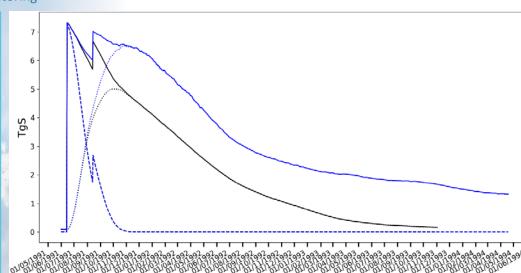
Preliminary evaluation of quiescent stratospheric sulphate aerosol

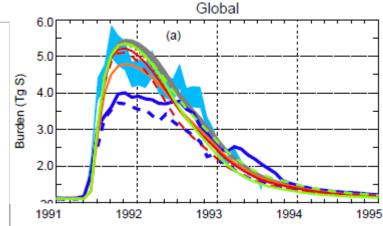

 \mathcal{T}

Volcanic simulation: coupling of IFS-CB05-BASCOE with IFS-GLOMAP

Atmosphere This new IFS-CB05-BASCOE-GLOMAP (ICBG) system has been Monitoring tested on various volcanic events:

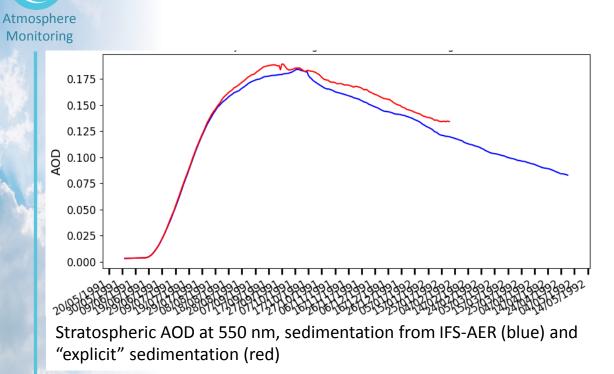
- Pinatubo (June 1991, ~14Tg SO₂ release)
- Calbuco (April 2015, ~0.4 Tg SO₂ release)
- Raikoke (June 2019, ~1.5 Tg SO₂ release)

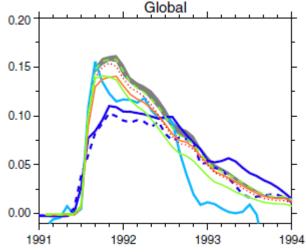



Time evolution of simulated global stratospheric total, particulate and gaseous sulfur during the Raikoke eruption (using a 3Tg release of SO_2 on 21/22 June 2019)

Follow-up of simulations of Pinatubo eruption: SO₂ and sulfate

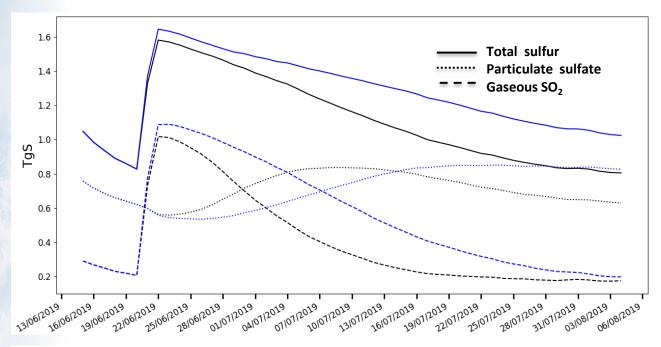
Atmosphere Monitoring




Stratospheric particulate sulphate from Sukhodolov et al. (2018). Light/dark blue = retrievals.

Stratospheric SO2 (dashed line), sulfate (dotted line) and total sulphur (solid line). Black: IFS-AER sedimentation, blue, "explicit" sedimentation

Follow-up of simulations of Pinatubo eruption: sAOD

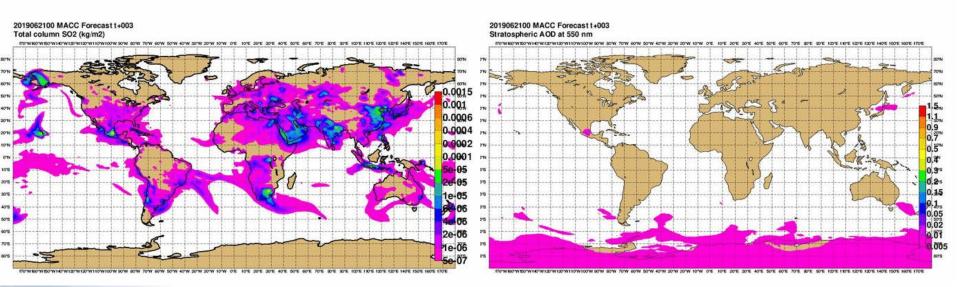

Stratospheric AOD from Sukhodolov et al. (2018). Light/dark blue = retrievals.

ICBG used for Raikoke eruption case study

Atmosphere Monitoring

1.5Tg SO₂ release at 7-15km and 13-16km

Time evolution of simulated global total, particulate and gaseous sulfur during the Raikoke eruption using a 1.5Tg release of SO_2 on 21/22 June 2019) . Black, release at 7-15 km; blue, release at 13-16 km



Volcanic simulation: coupling of IFS-CB05-BASCOE with IFS-GLOMAP

Atmosphere Monitoring

Simulation of the Raikoke eruption on 21/22 June 2019

Further developments

- Atmosphere Coupling GLOMAP surface area density to stratospheric chemistry.
 - Further evaluation of both quiescent state and volcanic response.
 - Porting newer GLOMAP extensions (nitrates, meteoric smoke etc.)
 - Fixing technical issues, numerical instabilities etc.
 - Extending 4D-Var data assimilation to ICBG:
 - Largely working in respect of CB05–BASCOE chemistry
 [O₃, CO, NO₂, (volcanic) SO₂, CH₂O (passive monitoring only)]
 - Basic implementation in place for GLOMAP aerosol, but technical and numerical issues remain