AeroCom Trajectory Experiment (GCMTraj)

Progress and Initial Results

AeroCom meeting 2019

Paul Kim, D. G. Partridge,

J. M. Haywood, A. Jones, A. Ekman, B. Heinold, S. Krishnan, Z. Kipling, T. Kuhn, U. Lohmann, D. Neubauer, J. Schacht, P. Stier, H. Struthers, T. Takemura, J. Teixeira, P. Tunved, H. Wang, D. Watson-Parris, Y. Yang, J. Zhu

1) Experiment rationale.

2) Experiment design, participants and state of progress.

- 3) Initial results.
 - a) Eulerian aerosol comparison at Zeppelin station.
 - b) Air mass footprint at Zeppelin station.
 - c) Linking aerosol concentrations to source regions.
- 4) Future work.

Rationale

UKESM1.0

- Potential source regions of cloud active aerosol at Zeppelin station in the Arctic.
- Source of particles over Siberia & ice pack is missing in the model.
 - What causes these differences?

Under-estimated source or over-estimated sink?

Experiment aims

Multi-model evaluation against reanalysis **combined** with observations in a **trajectory-based** Lagrangian framework.

Evaluate the discrepancies between models and observations as a function of aerosol **source & sink pathways during transport**.

Improve understanding of the impact of source and sink processes on aerosol life cycle and provide **Lagrangian constraints** for the representation of these processes in GCMs.

1) Experiment rationale.

2) Experiment design, participants and state of progress.

- 3) Initial results.
 - a) Eulerian aerosol comparison at Zeppelin station.
 - b) Air mass footprint at Zeppelin station.
 - c) Linking aerosol concentrations to source regions.
- 4) Future work.

Experiment design

Two stages

ArcticTraj-DE DE: "Development Experiment"

6 months (summer 2006) 1 station (Zeppelin) **GlobalTraj-CE** CE: "Core experiment"

> 10 years 10 global stations

Participants overview

Centre	Model
ECMWF	ERA-Interim & ERA5 & ECMWF-IFS
ETH	ECHAM6.3-HAM-P3
NASA	GISS
NSC	NorESM1.2
PNNL	CAM5.3(+)*
TROPOS	ECHAM6.3-HAM-ECLIPSE
UEF	ECHAM6.3-SALSA2.0
UKMO	HadGEM3-UKCA** & UKESM1**
UMI	CESM-IMPACT
UOX	ECHAM6.3-HAM2.2
RIAM	MIROC-SPRINTARS

 Modelling groups provide: 3-hourly aerosol data (CMIP6 emissions) 3-hourly trajectory data (winds nudged to ERA-Interim) 	
Development experiment results for	
models in bold are included in this	
presentation.	
* modifications to improve wet	
scavenging of aerosols and convective	
transport (Wang et al. 2013)	
the impletions lad by the University of	
Simulations led by the University of	
Exeter.	

- 1) Experiment rationale.
- 2) Experiment design, participants and state of progress.

3) Initial results.

a) Eulerian aerosol comparison at Zeppelin station.

- b) Air mass footprint at Zeppelin station.
- c) Linking aerosol concentrations to source regions.
- 4) Future work.

Eulerian evaluation at Zeppelin

- 1) Experiment rationale.
- 2) Experiment design, participants and state of progress.

3) Initial results.

a) Eulerian aerosol comparison at Zeppelin station.

b) Air mass footprint at Zeppelin station.

- c) Linking aerosol concentrations to source regions.
- 4) Future work.

Zeppelin: air mass footprint

ECHAM6.3-HAM-P3

ERA5

ECHAM6.3-HAM2.2

HadGEM3-UKCA

ECHAM-HAM-ECLIPSE

UKESM1.0

ECHAM6.3-SALSA2.0

CAM5.3(+)

Zeppelin: air mass average height

ECHAM6.3-HAM-P3

ERA5

ECHAM6.3-HAM2.2

HadGEM3-UKCA

ECHAM-HAM-ECLIPSE

UKESM1.0

ECHAM6.3-SALSA2.0

CAM5.3(+)

- 1) Experiment rationale.
- 2) Experiment design, participants and state of progress.

3) Initial results.

- a) Eulerian aerosol comparison at Zeppelin station.
- b) Air mass footprint at Zeppelin station.

c) Linking aerosol concentrations to source regions.

4) Future work.

Potential source contribution

Looking at aerosol in the range $D_p = 250-630$ nm

Looking at aerosol in the range $D_p = 250-630$ nm

Arctic smoke – record high air pollution levels in the European Arctic due to agricultural fires in Eastern Europe in spring 2006

A. Stohl¹, T. Berg^{1,*}, J. F. Burkhart^{1, 2}, A. M. Fjæraa¹, C. Forster¹, A. Herber³, Ø. Hov⁴, C. Lunder¹, W. W. McMillan⁵, S. Oltmans⁶, M. Shiobara⁷, D. Simpson⁴, S. Solberg¹, K. Stebel¹, J. Ström⁸, K. Tørseth¹, R. Treffeisen³, K. Virkkunen^{9,10}, and K. E. Yttri¹

Zeppelin: potential source contribution

Number concentration ($D_p = 250-630$ nm) cm⁻³

- 20

- 10

Ω

20

10

20

10

10

n

Zeppelin: potential source contribution

Number concentration ($D_n = 250-630$ nm) cm⁻³

- 1) Experiment rationale.
- 2) Experiment design, participants and state of progress.
- 3) Initial results.
 - a) Eulerian aerosol comparison at Zeppelin station.
 - b) Air mass footprint at Zeppelin station.
 - c) Linking aerosol concentrations to source regions.
- 4) Future work.

GlobalTraj-CE

Aerosol life cycle during transport: use model output **spatially and temporally collocated** along trajectories.

Investigate the representation of **sources and sinks** during aerosol life cycle.

Constrain the impact of source and sink parameterisations on aerosol life cycle and aerosol burden.

Analyse the impact of precipitation experienced during transport on resulting aerosol concentrations.

Begin GlobalTraj-CE cycle, pick stations to include and links to VolcACI.

Future work: links to VolcACI

Use overlap from simulations to investigate volcanic plume lifecycles.

Assess the forcing effects over larger spatial scales.

GlobalTraj-CE: station selection

Pick **five** stations in order of preference to be analysed in the core experiment (subject to data availability).

Thank you for listening

You can contact me at: p.s.kim@exeter.ac.uk

Zeppelin: residence time

Time (hours)

CAM5.3(+)

Number concentration ($D_p = 20-70$ nm) cm⁻³

