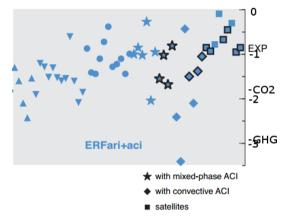
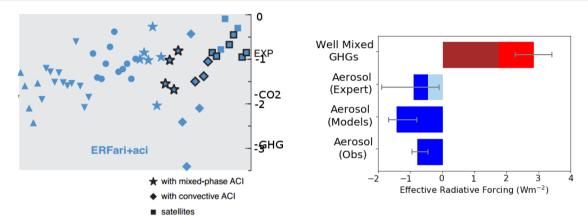
Imperial College London

Decomposing the aerosol radiative forcing in global models

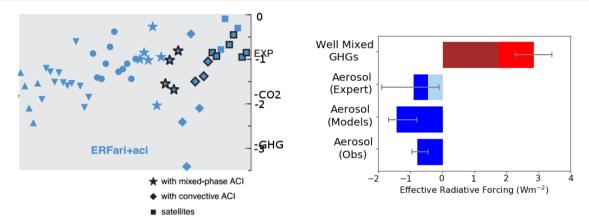

Edward Gryspeerdt¹, Johannes Mülmenstädt²

Andrew Gettelman, Florent Malavelle, Hugh Morrison, David Neubauer, Daniel Partridge, Philip Stier, Toshihiko Takemura, Hailong Wang, Minghuai Wang and Kai Zhang

¹Space and Atmospheric Physics Group, Imperial College London, UK, ²Universität Leipzig, Germany (e.gryspeerdt@imperial.ac.uk)


25th September 2019

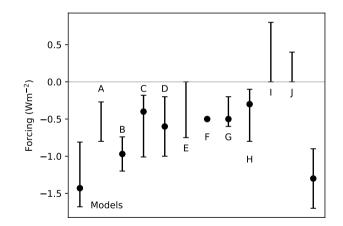
The aerosol radiative forcing


Modelled and observational estimates do not agree

The aerosol radiative forcing

- Modelled and observational estimates do not agree
- Observational estimates are more highly weighted

The aerosol radiative forcing

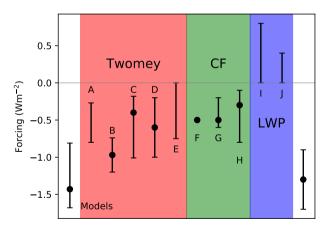


- Modelled and observational estimates do not agree
- Observational estimates are more highly weighted
- How can we best compare models and obs?

Observational estimates

Aerosols may impact

- Droplet number N_d (Twomey/RFaci)
- Liquid water path (LWP)
- Cloud fraction (CF)



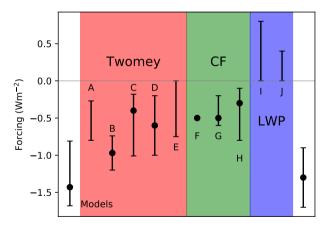
Observational estimates

Aerosols may impact

- Droplet number N_d (Twomey/RFaci)
- Liquid water path (LWP)
- Cloud fraction (CF)

Observational estimates are usually of individual components

Observational estimates


Aerosols may impact

- Droplet number N_d (Twomey/RFaci)
- Liquid water path (LWP)
- Cloud fraction (CF)

Observational estimates are usually of individual components

Estimating components in models is expensive:

- Many radiation calls (e.g. double call, PRP)
- Four PD-PI pairs required for liquid cloud adjustments

Apple to oranges?

Apple to oranges?

Decomposing the forcing

Aim to decompose a single PD-PI pair into the forcing components

- Δ PD-PI change
- *f_c* total cloud fraction
- α^{NoA} albedo with aerosol optical depth=0

 $\Delta SW \approx F^{\downarrow}((1-f_c)\Delta \alpha_{clr}^{NoA})$ Surf. + $(1 - f_c)\Delta(\alpha_{clr} - \alpha_{clr}^{NoA})$ SWari_{cs} $+ f_c \Delta (\alpha_c - \alpha_c^{NoA})$ SWari $+ f_c \Delta(\alpha_c^{NoA})$ SWalh $+(\alpha_{c}-\alpha_{clr})\Delta f_{c})$ SW_{cf} (1) $\Delta LW \approx (1 - f_c) \Delta OLR_{clr}$ LWarics $+ f_c \Delta OLR_c$ LW $+(OLR_{c}-OLR_{clr})\Delta f_{c}$ LW_{cf}

Residual from decomposition less than 5% in SW

Two further assumptions:

1. Changes can be decomposed to liquid and ice changes

$$f_c \Delta \alpha_c = f_l \Delta \alpha_l + f_i \Delta \alpha_i$$
 (2)

(4)

 α_c - cloud albedo; α_l - liquid cloud albedo; $\Delta \alpha_l^{N_d}$ - change in cloud albedo at const. LWP

Separating liquid cloud adjustments

Two further assumptions:

- 1. Changes can be decomposed to liquid and ice changes
- 2. LWP is leading control on cloud albedo

$$f_c \Delta \alpha_c = f_l \Delta \alpha_l + f_i \Delta \alpha_i \qquad (2)$$

$$\Delta \alpha_l^{LWP} = \left. \frac{d\alpha_l}{dLWP} \right|_{PD} \Delta LWP \qquad (3)$$

(4)

 α_c - cloud albedo; α_l - liquid cloud albedo; $\Delta \alpha_l^{N_d}$ - change in cloud albedo at const. LWP

Separating liquid cloud adjustments

Two further assumptions:

- 1. Changes can be decomposed to liquid and ice changes
- 2. LWP is leading control on cloud albedo

Twomey effect is the residual

$$f_c \Delta \alpha_c = f_l \Delta \alpha_l + f_i \Delta \alpha_i$$
 (2)

$$\Delta \alpha_l^{LWP} = \left. \frac{d\alpha_l}{dLWP} \right|_{PD} \Delta LWP \qquad (3)$$

$$\Delta \alpha_l^{N_d} = \Delta \alpha_l - \Delta \alpha_l^{LWP} \qquad (4)$$

 α_c - cloud albedo; α_l - liquid cloud albedo; $\Delta \alpha_l^{N_d}$ - change in cloud albedo at const. LWP

Ice clouds...

Ice clouds change due to aerosol (overlapping liquid cloud)

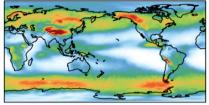
- Observational studies assume that they don't
- Adjust the change in liquid CF accordingly

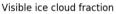
Adjusted
$$\Delta f_l = \Delta f_l + \Delta f_i \frac{f_l}{1 - f_i}$$
 (5)

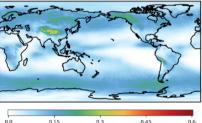
Ice clouds...

Ice clouds change due to aerosol (overlapping liquid cloud)

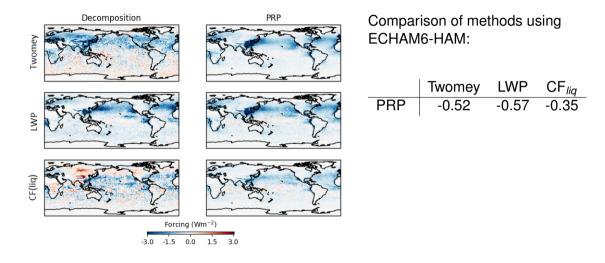
- Observational studies assume that they don't
- Adjust the change in liquid CF accordingly

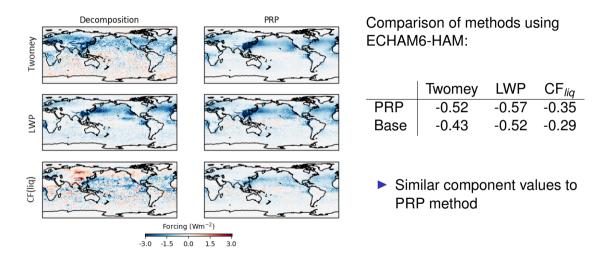

Adjusted
$$\Delta f_l = \Delta f_l + \Delta f_i \frac{f_l}{1 - f_i}$$
 (5)


Observational studies cannot see thin ice clouds

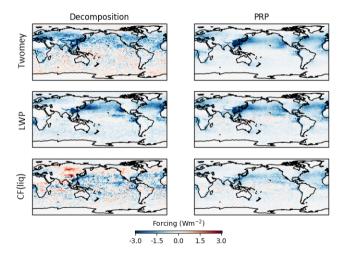

 Assume thin ice clouds make a small contribution (in SW)

This can add -0.4Wm⁻² to the overall liquid cloud forcing (model dependent)


Ice cloud fraction



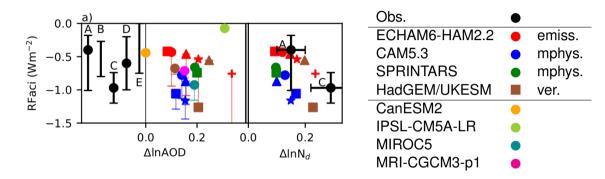
Validation

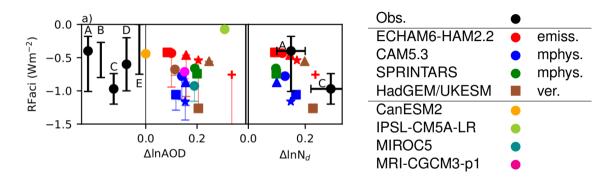

For PRP method see Mülmenstädt et al, ACPD, 2019

Validation

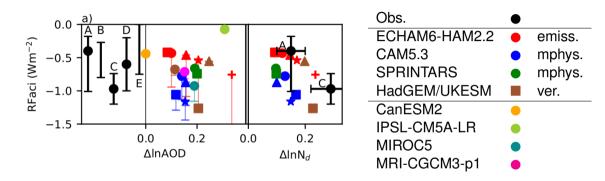
For PRP method see Mülmenstädt et al, ACPD, 2019

Validation

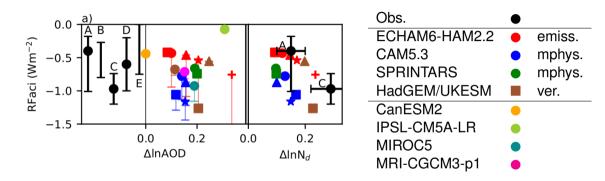


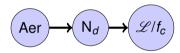

Comparison of methods using ECHAM6-HAM:

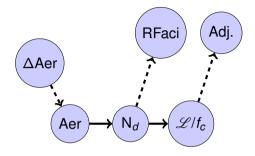
	Twomey	LWP	CF _{liq}
PRP	-0.52	-0.57	-0.35
Base	-0.43	-0.52	-0.29
CND	-0.42	-0.02	0.07

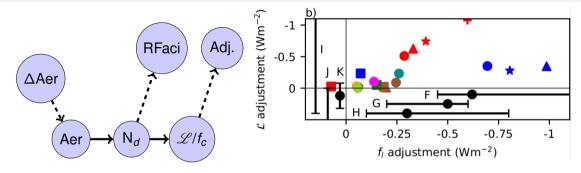

- Similar component values to PRP method
- Twomey similar to run with no cloud adjustments (CND)

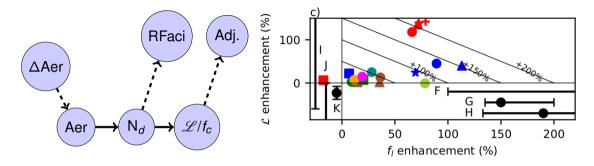
For PRP method see Mülmenstädt et al, ACPD, 2019



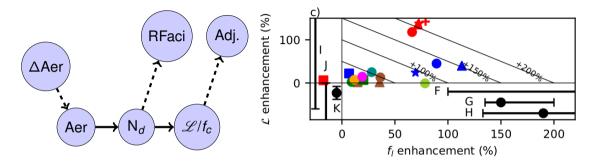

Observational uncertainty similar to model diversity.

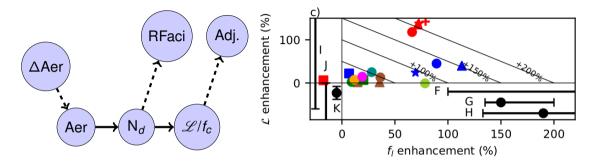


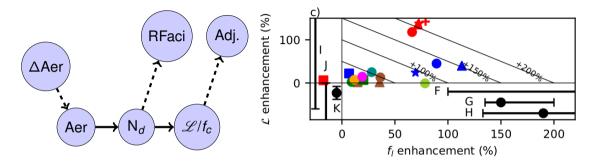

- Observational uncertainty similar to model diversity.
- Uncertainty in ΔN_d from uncertainty in anthropogenic aerosol fraction



- Observational uncertainty similar to model diversity.
- Uncertainty in ΔN_d from uncertainty in anthropogenic aerosol fraction
- Variation in RFaci even if ΔN_d is known

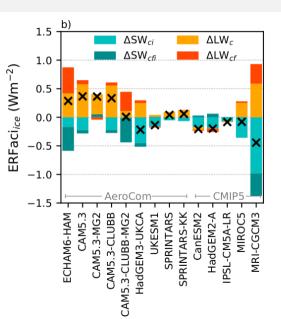





 Measuring adjustments as an enhancement of Twomey reduces impact of aerosol activation

- Measuring adjustments as an enhancement of Twomey reduces impact of aerosol activation
- Observational estimates for CF adjustments are similar magnitudes

- Measuring adjustments as an enhancement of Twomey reduces impact of aerosol activation
- Observational estimates for CF adjustments are similar magnitudes
 - Are we getting really good at measuring the wrong thing?



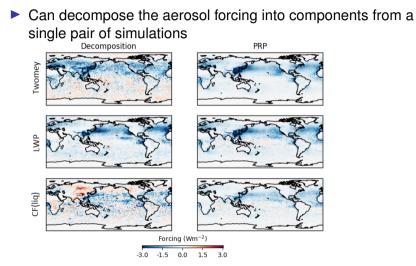
- Measuring adjustments as an enhancement of Twomey reduces impact of aerosol activation
- Observational estimates for CF adjustments are similar magnitudes
 - Are we getting really good at measuring the wrong thing?
- LWP adjustments are still poorly constrained

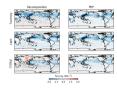
Forcing from ice clouds

A large variation in ice cloud forcing

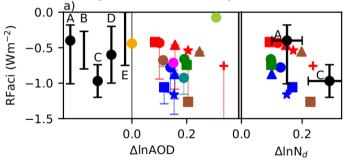
- Range of -0.5 to +0.4 Wm⁻²
- Similar to Uncertainty in Twomey effect
- Potential difference between AeroCom and CMIP5 models
 - Not result of simulation protocol (see HadGEM2/UKESM)
 - Difference in satellite simulators?
- No strong observational constraints (yet)

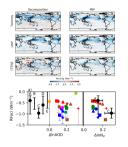
What does my model look like?

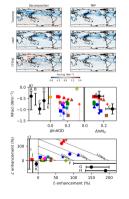

Output	Notes
rsut	
rsutcs	
tcc	Or CALIPSO simulator
lcc, icc	Or CALIPSO simulator
lwp	
iwp	Avoid with satellite simulator
rlut	LW only
rlutcs	LW only
rsdt	Can be calculated
rsutnoa	Approximate results without
rsutcsnoa	Approximate results without
od550aer	Optional
cdnc	Optional

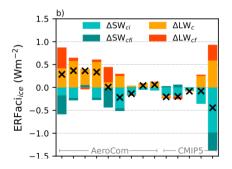

What do I need to do this?

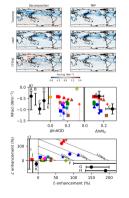
- PD and PI simulations
- Daily mean output (3 hourly is better)
- 5 years nudged is more than enough
 - ECHAM-HAM results indicate reasonable accuracy with one year of data
- AeroCom PII-IND3 setup is ideal

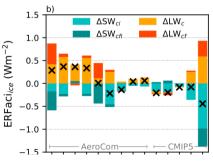

Method


- Described in Gryspeerdt et al, ACPD, 2019
- Python code available
- I can run analysis if you have the output

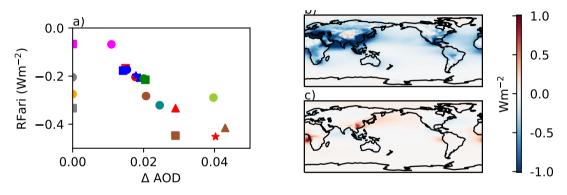

- Can decompose the aerosol forcing into components from a single pair of simulations
- Obs uncertainty and model diversity similar for Twomey



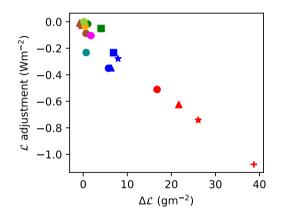

- Can decompose the aerosol forcing into components from a single pair of simulations
- Obs uncertainty and model diversity similar for Twomey
- Adjustments are better constrained as a function of Twomey



- Can decompose the aerosol forcing into components from a single pair of simulations
- Obs uncertainty and model diversity similar for Twomey
- Adjustments are better constrained as a function of Twomey
- Large variation in ice cloud forcing

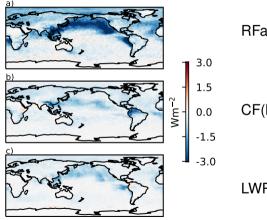


- Can decompose the aerosol forcing into components from a single pair of simulations
- Obs uncertainty and model diversity similar for Twomey
- Adjustments are better constrained as a function of Twomey
- Large variation in ice cloud forcing
 - No strong observational constraints (yet...)



RFari

- RFari closely related to AOD change
- Above cloud RFari is a much smaller positive adjustment


LWP adjustment

To first order, LWP adjustment is a function of LWP change

Exact relationship appears to vary between models

Forcing spatial patterns

RFaci

CF(liquid)

LWP