Observational constraints on aerosol forcing over the Southeast Atlantic

SARAH DOHERTY

WITH INPUT FROM THE NASA-ORACLES TEAM, INCLUDING:

JENS REDEMANN, ROB WOOD, PAQUITA ZUIDEMA, PABLO SAIDE, YOHEI SHINOZUKA, STEVEN HOWELL, STEFFEN FREITAG, AMIE DOBRACKI, JIM PODOLSKE, MICHAEL DIAMOND, JIANHAO ZHANG, MARY KACARAB, KERRY MEYER, DAVID PAINEMAL, ...

SE Atlantic aerosol forcing

September-mean (2002-2012) MODIS

- low-level cloud fraction
- fine-mode AOD
- fire pixel counts ERA-Interim
- 600-hPa winds

Modeled RF_{ari} forcing uncertain in both sign & magnitude!

> Aug-Sept avg Rf_{ari} spread across 16 AeroCom models (Steir et al., 2013)

Activities that might benefit AeroCom aerosol forcing estimates for the SE Atlantic

- Dataset contribution to the AeroCom "Aircraft" experiment
- Measure of seasonal differences (Aug, Sept, Oct)
- Model-obs comparisons of aerosols properties across transects

 → primarily focused on DARE
 - Column values & vertical variations
 - Aerosol properties (extinction, SSA, SAE, AAE, size), component masses (CO, BC, OA)
 - ► RH profiles
 - Warm cloud fraction & optical depth
- Assessment of DARE across different methods
- Assessment of SDE/IDE using LES studies + observations
- Process-level studies

Seasonality of aerosols and clouds

Climatology

August

October

Redemann et al. An overview of the ORACLESx (ObseRvations of Aerosols above CLouds and their intEractionS) project: aerosol-cloud-radiation interactions in the Southeast Atlantic basin, submitted soon!

Seasonality of aerosols and clouds Climatology 2016 2017 2017

Sumatoriogy

2018

August

Redemann et al. An overview of the ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) project: aerosol-cloud-radiation interactions in the Southeast Atlantic basin, submitted soon!

Seasonality of aerosols and clouds

aerosol top height cloud top height separation between clouds & aerosols

CALIOP v.3 aerosol profile product 2006-2012

Redemann et al. An overview of the ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) project: aerosol-cloud-radiation interactions in the Southeast Atlantic basin, submitted soon!

Seasonality of aerosols and clouds

Redemann et al. An overview of the ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) project: aerosol-cloud-radiation interactions in the Southeast Atlantic basin, submitted soon!

E 15°

Walvis Bay

Aircraft flight tracks: ER-2 (remote sensing) 2016 P-3 (in-situ & r.s.) 2016 2017 2018

Representativeness of ORACLES sampling

P-3 in-situ sampling along "Routine" tracks

Representativeness of ORACLES sampling WRF-CAM5 model extractions

Above-cloud AOD: 2016

Shinozuka et al., Modeling the smoky troposphere of the southeast Atlantic: a comparison to ORACLES airborne observations from September of 2016, submitted, ACP.

Plume height: 2016

Doherty et al., A summary and model-observation comparison of vertically-resolved aerosol and cloud properties over the Southeast Atlantic, in prep, ACP.

Light extinction: 2016

NW (box 1)

 \rightarrow SE (box 8)

UM-UKCA, dry

 \rightarrow UM-UKCA, ambient RH

-GEOS5

Observed: Modeled Extinction 2016 Diagonal transect

Doherty et al., A summary and modelobservation comparison of vertically-resolved aerosol and cloud properties over the Southeast Atlantic, in prep, ACP.

2016 Diagonal transect

In-situ obs, dry
 WRF-CAM5, P3 present, amb-RH
 WRF-CAM5, all daytime, amb-RH
 GEOS5, P3 present, amb-RH
 UM-UKCA, P3 present, amb-RH
 UM-UKCA, P3 present, dry

2017 Meridional transect Extinctionweighted SSA₅₃₀ ("column" SSA)

Doherty et al., A summary and model-observation comparison of vertically-resolved aerosol and cloud properties over the Southeast Atlantic, in prep, ACP.

2016 Diagonal transect

MODIS-Standard (mask frac.)
 MODIS-Standard (retr. frac.)
 MODIS-Meyer (retr. frac.)
 SEVIRI-LARC
 WRF-CAM5
 ALADIN-Climate
 GEOS5
 UM-UKCA

2017 Meridional transect

Cloud fraction (monthly mean)

ZONAL

Doherty et al., A summary and model-observation comparison of vertically-resolved aerosol and cloud properties over the Southeast Atlantic, in prep, ACP.

2016 Diagonal transect

2017 Meridional transect Cloud optical depth (month log-mean)

Doherty et al., A summary and model-observation comparison of vertically-resolved aerosol and cloud properties over the Southeast Atlantic, in prep, ACP.

Observational statistics available for transects across SE Atlantic:

- Plume height (specified thresholds)
- AC-AOD
- Extinction
- SSA
- SAE
- AAE
- Mean particle size (vol mean dia.)*
- Component masses (BC, OA, CO)
- RH**
- Cloud fraction**
- Cloud optical depth**

* Only in Shinozuka et al.** Only in Doherty et al.

<u>Shinozuka et al.</u>: Box-whisker plots for:

- MBL
- MBL top → 3km
- 3**→**6km

Doherty et al.:

- Vertical profiles (250m alt. bins)
- Ext-weighted SSA
- 2-D CF, COD

Synthesis of multiple estimates of **Direct Aerosol Radiative Effects (DARE)** Idea still in development – please join!

Each estimate of DARE is accompanied by associated values of:

- SSA
- Asymmetry parameter
- AOD
- Cloud fraction (mean)
- Cloud optical depth (log-mean)

\rightarrow Compare PDFs of variables

How do they compare to observed PDFs?

 \rightarrow Accompany by sensitivity study of DARE to each variable

Process-level studies around the Aerosol indirect effects

Kacarab et al., Biomass Burning Aerosol as a Modulator of Droplet Number in the Southeast Atlantic Region, ACPD, 2019.

Droplet formation parameterization: $f(N_{a'}, \omega_{o'}, \kappa)$

Found 3 regimes:

- ▶ N_a < ~500 cm⁻³ ("clean" MBL)
 - CDNC more sensitive to N_a than to ω_o
- ▶ 500 cm⁻³ < N_a < 900 cm⁻³
 - "competitive" regime
 - CCN more sensitive to ${\cal K}$
- > N_a > ~900 cm⁻³ & S_{max} approaches 0.1%
 - "Velocity-limited" regime: ω_o controlling factor
 - CDNC responds weakly to CCN concentration increases

Process-level studies around the Aerosol indirect effects

Diamond et al., in progress

Diamond, M. S., et al. Time-dependent entrainment of smoke presents an observational challenge for assessing aerosol–cloud interactions over the southeast Atlantic Ocean, *ACP*, 2018.

Process-level studies around the Aerosol indirect effects

Zhang, Jianhao and P. Zuidema, The diurnal cycle of the smoky marine boundary layer observed during August in the remote southeast Atlantic, *ACP*, in revision, 2019.

Ascension Island (DOE-LASIC)

- Observed reduction in all-sky albedo when there's more smoke present in BL (August)
- BL SDE that reduces low cloud cover is a cooling response added to aerosol direct effects (DARE<0 because of low CF)</p>
- In September, low cloud cover increases & aerosol is more clearly aloft; expect the DARE sign to flip (DARE>0 w/ high CF)
- Recommendation: Look at the evolution in aerosol forcing in monthly increments, rather than seasonal.

More to come in ACP Special Issue on Aerosol Forcing in the SE Atlantic