Constraining aerosol radiative forcing using aerosol absorption

Lucia Deaconu¹, Duncan Watson-Parris¹, Lindsay Lee², Philip Stier¹, Leighton Reygare², Jill Johnson², Yoshioka Masaru², Ken Carslaw²

¹Atmospheric, Oceanic and Planetary Physics, Department of Physics, University of Oxford ²School of Earth and Environment, University of Leeds

Outlook

1. Introduction

- 2. AeroCom Black Carbon PPE setup
- 3. Constraining methodology
- 4. Multi-Model Black Carbon Experiment
- 5. Conclusions

Motivation

The present day lack of good constraints on <u>aerosol absorption</u> can significantly affect the estimates of aerosol climate impact.

AeroCom Phase 2 multi-model:

- Annual mean total AAOD_{550nm} : 0.0042 ± 0.0019 (or ±50%)
- Min-max range total AAOD_{550nm} : 0.0021 to 0.0076

(Myhre et al. 2013)

DRF due to black carbon (BC) : +0.71 [+0.09, +1.26] W m⁻² (Bond et al., 2013)

Reducing uncertainty of aerosol ERF

Tuning a model will reduce uncertainty in aerosol radiative forcing ?

=> produce <u>one value</u> of forcing

We want all the model values that are observationally plausible ...

• sample uncertainty within a single model and challenge it with multiple observation types

How?

Perturbed Parameter Ensemble (PPE)

AeroCom Black Carbon experiment (PPE)

⁽Johnson et al., 2018)

1. Constrain models using observations

2. Compare (constrained) models to each other

AeroCom Black Carbon PPE setup

ECHAM6-HAM BC PPE 3d scatter plot BC perturbed parameter values Latin Hypercube sampling => parameter combination design 39 model runs BC number/ Wet deposition /N i 550 ... ¹⁰BC n¹² BC number combinations 0.5 1.8 High time resolution output (3 hourly Nudged to horizontal winds to monthly) for optimum comparison (identical throughout ensemble) with measurements Aerosol RF 2017 meteorology 3 climate model parameters (BC 2017 BC emissions emissions, wet deposition, BC imaginary part of RI) 1850 and 2017 anthropogenic 40 simulations per year (includes model emissions baseline) + spin-up

1. Constrain models using observations

1. Constrain models using observations

4. Constraining process

- 1. Identify the model variants below a certain Threshold (θ)
- 2. Determine the Tolerance (T) as the % of observations for which the model variant is greater than θ

5. Retain/ Reject parameter space

Results from GASSP PPE

Global constraints - 2008

θ = 1 T = 0 ΥΑΥ!

WORKS!

AERONET AOD (3 hourly model outputs collocated at each station) ERF_{ari} constraint map

(Masaru et al., in review)

Plausible combination of parameters => Plausible models => **Reduction of model uncertainty and improved forcing estimates:** Effective Radiative Forcing (ERF) due to Aerosol Radiation Interaction (ari)

Perturbed parameters for AeroCom BC PPE

- Implementation test -

Atmospheric burden	Aerosol number: Scale mass flux of BC carbonaceous emission	[X*0.5 <i>,</i> X*2]	
	Wet deposition: Scale removal tendencies/change in droplet number	[Y*0.3 <i>,</i> Y*3]	
Radiative properties	BC optical properties: Scale the imaginary part of refractive index	[0.0, 0.2, 0.8]	

Initial sensitivity test – ECHAM6-HAM

Atmospheric burden: BC emission flux

Baseline (X*1)

Low: X*0.5

Diff AAOD

ğ

Diff AAOD

Absorbing AOD

NERC

ENVIRONMENT

UNIVERSITY OF

Initial sensitivity test – ECHAM6-HAM

Atmospheric burden: Scale wet deposition

Baseline (X*1)

Absorption optical thickness - total 550nm (1) Area mean: 0.00287936 90°N 60°N 30°N 0* 30°5 60°S 90*S € 0.0050 Absorption optical thickness - total 550nm Absorption optical thickness - total 550nm 0.0045 Absorption optical thickness - total 550nm low 0.0040 0.0035 baseline 0.0030 0.0025 0.0020 high 2017.03.12 2017.05.01 2027-09-28 2017-11-17 2017.01.21 2017.06.20 2017.08.09 2018.01.06 time

Absorbing AOD

NERC

ENVIRONMENT

UNIVERSITY OF

Low: X*0.3

High: X*3

Initial sensitivity test – ECHAM6-HAM

Radiative properties: BC optical properties

Baseline (N_i = 0.71)

90°N

60°N -

₿ 30°N

30°5

60°S -

90*5

0.0035

0.0030

0.0025

0.0020

0.0015

0.0010

2017-01-21

OXFORD

ude (degre

3

High: N_i = 0.8

Absorption optical thickness - total 550nm (1) Absorption optical thickness - total 550nm (1) Absorption optical thickness - total 550nm (1) Area mean: 0.00119892 Area mean: 0.00316281 Area mean: 0.00287936 90"N 90°N 60°N 60°N 30"N 30°N 0. 0 30*5 30*4 6015 60*5 90°S 90 120°W 180" 60"W 0. 60°E 120°E 180 120°W 180* 60°W 60°E 120°E 0.0 180 longitude (degrees) longitude (degrees) 0.005 0.010 0.015 0.020 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 Abs diff Abs diff Absorption optical thickness - total 550nm Area mean: -0.00168044 Area mean: 0.000283453 Absorption optical thickness - total 550nm high Absorption optical thickness - total 550nm 60' baseline de (degree 30** 0 30" 60*5 OW 180* 120°W 60°W 120°E 180 180" 120°W 60°W 120°E longitude (degrees) longitude (degrees) 2017-11-17 2017.03.12 2017.05.01 2017-09-28 2017.06-20 2017-08-09 2018.01.06 -2 -4 -2 -4 2 4 time **Diff AAOD Diff AAOD** 1e-3 10-3

Absorbing AOD

NERC

ENVIRONMENT

2. Compare models to each other

Multi-Model AeroCom BC PPE setup

Collecting diagnostics

				Observation
Diagnostic	Domain	Structure	Time scale	source
TOA fluxes	Global	2d field	Monthly	
AOD (440 and 870nm)	Station	Station	3hr	Aeronet
AOD (550nm)	Global	2d field	Monthly	MODIS
AAOD	Station	Station	3hr	Aeronet
BC mass mixing ratio	Flight track simulator	Defined points	3hrly	GASSP + CLARIFY database
BC mass mixing ratio	Global	3d field	Monthly	GASSP database
BC dry deposition flux	Global	2d field	Monthly	
BC wet deposition flux	Global	2d field	Monthly	
BC burden	Global	2d field	Monthly	
BC emissions flux	Global	3d field	Monthly	
All species (except BC)				
emission flux	Global	3d field	Monthly	
Aerosol number (in				
each mode)	Global	3d field	Monthly	

Conclusions and Perspectives

Emitted

Compound Aerosols and

precursors

(Mineral dust, SO₂, NH₃, Organic carbon and Black carbon)

2.0

1.5

1.0

0.5

Resulting Atmospheric Drivers

Mineral dust Sulphate Nitrate

Organic carbon Black carbor

2. Compare (constrained) models to each other 0.0 L

Radiative Forcing by Aerosols from 1750 to 2011

Radiative Forcing by Drivers

ncludes black carbon on snow and ice