Following Clouds: Seeking Causal Relationships in Aerosol-Cloud Interactions

Matthew Christensen, William Jones and Philip Stier University of Oxford

AEROCOM 2019, Barcelona, Spain

European Research Council Established by the European Commission

Following Clouds

Lagrangian Observational Technique

- Tracer quantities become a function of **time only**.
	- Budgets can be formulated without the use of hard-to-measure advective terms
	- Temporal constraints on ACI can be constructed
- Cloud regime shifts are difficult to quantify from a Eulerian perspective
- **History** of the environment can be linked to the development of cloud.
	- Upstream conditions impact local cloud properties
	- Monthly cloud amounts are better correlated with SST 24-30 h upstream than with the local surface temperature (Klein et al. 1995).

Method Run **NOAA HYSPLIT** model

Aggregate **SEVIRI** observations over a 1°⨯1° degree region averaged over 1hr intervals.

Average **MODIS** and precipitation measurements from GPM and IMERG.

 $\begin{bmatrix} \blacksquare \end{bmatrix}$

Liquid Cloud Fraction

- Cloud fraction significantly lower in the POC (**red & black**) on day 248.
	- *Difficult to see transition when only MODIS data is used.*

Liquid Cloud Fraction

- Cloud fraction begins to decrease rapidly in POC cases (**red & black**) during early morning hours on day 247.
- MODIS collection 6 product agrees well with SEVIRI NASA product.

Droplet Effective Radius (daytime only)

- Nighttime retrieval screened by solar zenith angle greater than 60°.
- Clear separation between POC and control on final day of trajectory.
- MODIS collection 6 LUT's saturate at R_e = 30 μ m, aircraft observations provided by Steve Able show the effective radii are actually about twice this value (not shown).

Lagrangian Stratus-to-Cumulus Transition

Question 1: Can aerosols influence cloud properties along this transition? Question 2: Do we observe evidence for cloud lifetime effects?

Question 3: How do Twomey, LWP and Cloud fraction radiative effects change along trajectories?

Method:

- **Parcel model: HYSPLIT**
- **Duration**: *forward* 80 hours
- **Height:** middle of the PBL
- **Period:** 2016 2017

• **Period:** 2016 – 2017

• Confident clear grid-boxes at *start of trajectory*

5. Sort trajectories between clean and polluted.

Regional Analysis Procedure

Baja California Stratocumulus

Baja California Stratocumulus

daytime averages (9am – 4pm local time)

Daytime averages

- Cloud droplet concentration is larger in polluted trajectories.
	- Clouds forming in polluted airmass have more numerous cloud droplets (Twomey, 1974).
- Cloud fraction is larger under polluted conditions
	- aerosols suppress precipitation (AMSR and IMERG show this) causing cloud water path and areal extent to increase.
- Cloud property differences between polluted and clean trajectories diminish along the trajectory.

Baja California Stratocumulus

Chilean Stratocumulus

Namibian Stratocumulus

- Black carbon AOD is 3x larger in the Namibian region.
	- \triangleright minor influence on CDNC and cloud fraction overall.

Aerosol-Cloud Lifetime Effect

- All trajectories start off with cloud fraction less than 25%.
- $T_{overcast}$: timescale for cloud fraction to increase to 75%
- *T_{24hr_persistence}:* timescale for cloud fraction to return below 75%

Low-Cloud Onset (Formation)

• Formation (T_f): timescale of trajectory grid box reaching 75%

- On average it takes approximately 30 hours for the cloud fraction to increase from nearly zero to 75%.
- 13.2% of cases never exceed $C_f = 75.$
- It takes 9 hours longer for the airmass to become cloudy when the aerosol optical depth is low.

Low-Cloud Persistence

Persistence (T_p) : number of overcast hours along trajectory in a 24 hour period after formation

- Clouds persist \sim 2 hours longer when AOD levels are high.
- **Meteorology** affect on cloud lifetime.
	- Mauger and Norris (2007) show that scenes with large AOD and large cloud fraction have origins closer to Europe and experience greater lower tropospheric static stability (LTS) during the past $2 - 3$ days than did scenes with small AOD and small cloud fraction.
	- Adebiyi and Zuidema, 2018 show that meteorological co-variation with aerosol loading is small in this region using daily MODIS data.

Global-Scale Assessment

- Stable conditions: – Aerosol prolongs cloud lifetime by ~2 hours
- Unstable conditions:
	- Aerosol may lead to less longevity.

Global-Scale Assessment

- Cloud forms significantly earlier under polluted conditions (10 hours)
	- Water vapor release from biomass combustion may contribute to higher moisture content (Parmar et al. 2008, ACP).
	- Higher propensity for artefacts in the satellite cloud mask retrieval at high AOD (Remer et al. 2005, AMT).

Radiative Forcing

$$
\Delta F_{TOA} = -F^{\downarrow} \text{C} \alpha_c (1 - \alpha_c) \frac{d \ln N_d}{d \ln AOD} \left(\frac{1}{3} + \frac{5}{6} \frac{\Delta \ln \mathcal{L}}{\Delta \ln N_d} + \frac{\Delta \ln C}{\Delta \ln N_d} \right) \Delta \ln AOD_{anth}
$$

*see Quaas et al. (2008), JGR for derivation

Radiative forcing largest under stable atmospheric conditions.

LWP and CF adjustments add to about 40% of the total response.

Radiative forcing remains roughly constant as a function of time along trajectories. .

Summary

- Lagrangian trajectory modeling was combined with satellite data to study the time-dependent properties of the aerosol-cloud system.
	- Geostationary satellite observations can be used to fill in the gaps from polar orbit satellite data.

• An ensemble of lagrangian trajectories show that aerosols enhance the longevity of low-level clouds by about 2 hours. – Co-variation of meteorology influences cloud fraction and cloud lifetime particularly in stable atmospheric conditions.

• Forcing calculations indicate that the cloud fraction and Twomey effects are large compared to the liquid water
path response. path response.

Radiative Forcing

Cloud fraction and liquid water path responses have significant contributions to the total forcing.

> Seifert et al. (2015) deepening leads to a decrease in RH and reduction in cloud lifetime.

*see Quaas et al. (2008), JGR for derivation

