EFFECT OF WATER UPTAKE ON AEROSOL LIGHT SCATTERING: COMPARISON OF A NEW IN-SITU BENCHMARK DATASET TO NINE GLOBAL CLIMATE MODELS

M. A. Burgos^{1,*}, G. Titos², E. Andrews³, H. Bian⁴, V. Buchard^{4,5}, G. Curci⁶, A. Kirkevåg⁷, H. Matsui⁸,

C. Randles⁴, K. Zhang⁹, G. Myhre¹⁰, T. Van Noije¹¹, A. Benedetti¹² and P. Zieger¹

¹Department of Environmental Science and Analytical Chemistry, Stockholm University (Sweden) ²Andalusian Institute for Earth System Research, University of Granada (Spain) ³Cooperative Institute for Research in Environmental Studies, University of Colorado (USA) ⁴NASA/Goddard Space Flight Center (USA) ⁵GESTAR/Universities Space Research Association (USA) ⁶Dipartimento di Scienze Fisiche e Chimiche, Universita' degli Studi dell'Aquila (Italy) ⁷Norwegian Meteorological Institute (Norway) ⁸Graduate School of Environmental Studies, Nagoya University (Japan) ⁹Earth Systems Analysis and Modeling, Pacific Northwest National Laboratory (USA) ¹⁰ Center for International Climate Research (Norway) ¹¹The Royal Netherlands Meteorological Institute (Netherlands) ¹²European Centre for Medium-Range Weather Forecasts

> Funded by US Department of Energy <u>*Maria.Burgos@aces.su.se</u>

Aerosols and Climate

- **O** Direct and indirect effects on the Earth's energy balance
- $\circ~$ Scattering (σ_{sp}) and absorption of solar radiation and the number of cloud condensation nuclei will be affected by aerosol concentration, size and chemical composition

Aerosol Particle Relative Humidity

HYGROSCOPICITY:

Since aerosol particles can take up water, they can change in size and chemical composition depending on the ambient relative humidity (RH)

 $\sigma_{sp}(RH,\lambda)$, strongly depends on RH

The effect of water uptake is **relevant** for **climate forcing calculations** as well as for the comparison or validation of **remote sensing** with in-situ measurements and for the improvement of **Global Climate Models**

How well do Global Climate Models represent aerosol optical hygroscopic growth?

Hygroscopicity in GCM's

Fraction of aerosol optical depth (AOD) due to water in different models:

Figures from Mian Chin (NASA Goddard)

ECHAM5: global annual average **76%**

GOCART: global annual average 40%

nature > scientific data > data descriptors > article

SCIENTIFIC DATA

A global view on the effect of water uptake on aerosol particle light scattering

María A. Burgos [™], Elisabeth Andrews, Gloria Titos, Lucas Alados-Arboledas, Urs Baltensperger, Derek Day, Anne Jefferson, Nikos Kalivitis, Nikos Mihalopoulos, James Sherman, Junying Sun, Ernest Weingartner & Paul Zieger [™]

INSITU project within AeroCom Phase III:

- Aerosol optical data at RH=0, 40 and 85%
- Hourly values for 2010 (time coverage not always coincident with measurements). Daily for Oslo-CTM2 (preliminary).
- Various locations -> 20 coincident sites with observational data
- Uncertainty in measurements between 20-30%

f(RH=85%, 550nm)

Recommended dry conditions in order to keep measurements comparable: RH < 30 - 40%

WMO/GAW. Aerosol Measurement Procedures Guidelines and Recommendations, Report No. 153. World Meteorological Organization, Geneva, Switzerland (2003).

f(RH=85%, 550nm)

Recommended dry conditions in order to keep measurements comparable: RH < 30 - 40%

WMO/GAW. Aerosol Measurement Procedures Guidelines and Recommendations, Report No. 153. World Meteorological Organization, Geneva, Switzerland (2003).

Compact visualization of statistical values with Taylor diagrams

Compact visualization of statistical values with Taylor diagrams

Compact visualization of statistical values with Taylor diagrams

Entire dataset -> seasonally collocated (but different years!)

Warning! Model outputs from 2010 have been compared with in-situ measurements, collocating by month, while years may be different!

Entire dataset -> seasonally collocated (but different years!)

- GEOS models exhibit less variability
- CAM models tend to overestimate more than GEOS models at Arctic, marine and rural sites

Entire dataset -> seasonally collocated (but different years!)

- Oslo-CTM2 stands out due to its variability -> PRELIMINARY! daily values
- ECMWF is the model that underestimates more sites
- TM5 model exhibits the best agreement at all site types

Different representation of

- <u>Aerosols</u>: aerosol size distribution, mixing state, attachment state, composition, and internal structure
- **<u>Processes</u>**: primary emissions, new particle formation, coagulation, water uptake, and activation to form cloud droplets

CAM-models

Model	Hygroscopicty	Mixing State	Size distribution
CAM5.3 Liu et al. 2012, GMD	Köhler theory (Table S3: e.g. 1.16 for sea salt)	Internal and external mixing	Aitken, accumulation and coarse
CAM5-ATRAS Matsui et al. 2011, JGR	Köhler theory (1.16 for Na and Cl)	Multiple mixing states for each size bin	128 aerosol bins
CAM5.3-Oslo Kirkevåg et al. 2018, GMD	Köhler theory (growth factor ~2 for RH=80%, sea salt)	Internal and external mixing	44 size-bins with radii (r) ranging from 0.001 to 20 μm

Different representation of

- <u>Aerosols</u>: aerosol size distribution, mixing state, attachment state, composition, and internal structure
- **<u>Processes</u>**: primary emissions, new particle formation, coagulation, water uptake, and activation to form cloud droplets

GEOS-models

Model	Hygroscopicty	Mixing State	Size distribution
GEOS5-Globase Chin et al. 2002, AMS	(growth factor of 2 at RH=80% for sea salt)	External mixing	Sulfate, BC and OC (2 bins each), dust and sea salt (5 bins each)
GEOS-Chem Bey et al. 2001, JGR	Table 1, Martin et al., 2003, JGR (growth factor of 2 at RH=80% for sea salt)	External mixing	Sulfate-nitrate-ammonium, OC, BC (bulk- mass approach) Dust (4 bins), sea salts (2 bins)
GEOS5-MERRAero Buchard <i>et al.</i> 2015, ACP	OPAC and Tang et al., 1997	External mixing	OC and BC (2 bins), sulfate, dust (5 bins), sea salt (5 bins)

- I. The **new benchmark dataset** of RH-dependent particle light scattering coefficients and scattering enhancement factors *f*(RH) has been finalized and successfully tested against nine GCM's
- II. Models generally **overestimate** *f*(RH) but comparison **improves** if **RH**_{drv}=40% is taken as reference RH
- III. Models show a **large diversity** in *f*(RH) with respect to magnitude and temporal evolution (e.g. seasons)
- IV. Reasons are manifold: differences in model parametrizations of e.g. hygroscopicity, size, sources + strength, mixing state, removal processes, etc.

Thanks for your attention

BackUp slides

(Maria.Burgos@aces.su.se)

Model vs Measurements: relative difference

- Large differences (25% 75%) between models and measurements
- Largest differences found for Rural and Urban sites for all models
- Models perform better at Arctic and Desert sites

Tandem Humidified Nephelometer

Introduction Motivation Measurements Models Comparison Conclusions

Checking the time series of BRW for the measurements

Wet/dry

N.data(2009)=[0,0,0,0,0,0,0,0,5,13,33,11] N.data(2010)=[51,78,39,17,0,1,36,28,32,19,52] N.data(2011)=[24,23,34,24,3,0,0,0,19,0,3,73] N.data(2012)=[34,63,63,0,11,11,5,4,15,26,19,60] N.data(2013)=[92,33,75,54,9,6,8,5,14,2,0,0]

85%/40%

N.data(2009)=[0,0,0,0,0,0,0,0,2,5,16,9] N.data(2010)=[19,43,58,15,10,0,0,20,19,19,16,49] N.data(2011)=[21,20,25,24,2,0,0,0,5,0,3,25] N.data(2012)=[19,34,41,0,2,4,2,3,5,4,12,40] N.data(2013)=[36,12,50,40,6,1,2,0,3,0,0,0]

