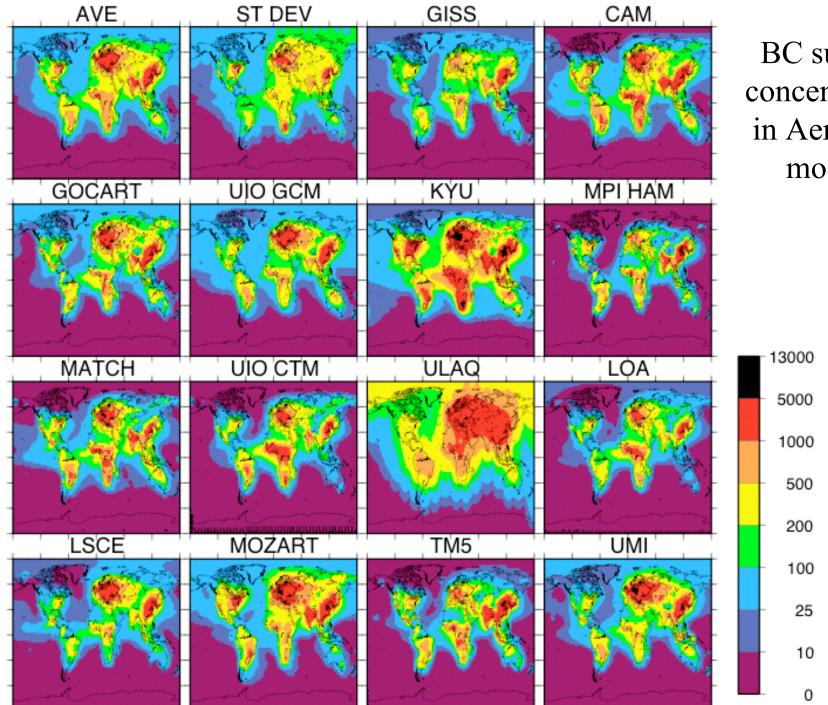


National Aeronautics and Space Administration

Evaluation of Black Carbon in Global Aerosol Models *in preparation*


Dorothy Koch

Columbia University/Goddard Institute for Space Studies coauthors: Schulz, Kinne, Bond, Schuster, Klimont, van Aardenne, & AeroCom inodelers

October 10, 2008

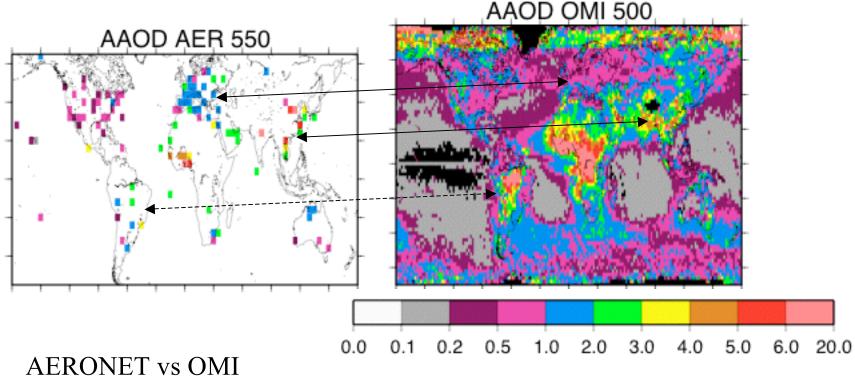
Goals

- Evaluate and consider diversity of AeroCom models':
 - BC Surface concentration (surface measurements)
 - BC column load (Schuster from AERONET)
 - Aerosol Absorption Optical Depth (from AERONET and OMI)
- Use the GISS model (with simple mass-based aerosol scheme) for sensitivity analysis in:
 - Emissions (Bond, IIASA, EDGAR)
 - Aging rate (E-fold = 1 day, 0.5d, 2d)
 - Removal by ice (12%, 5%, 24% wrt water)
 - Particle effective radius (0.08, 0.1, 0.06 μ m)

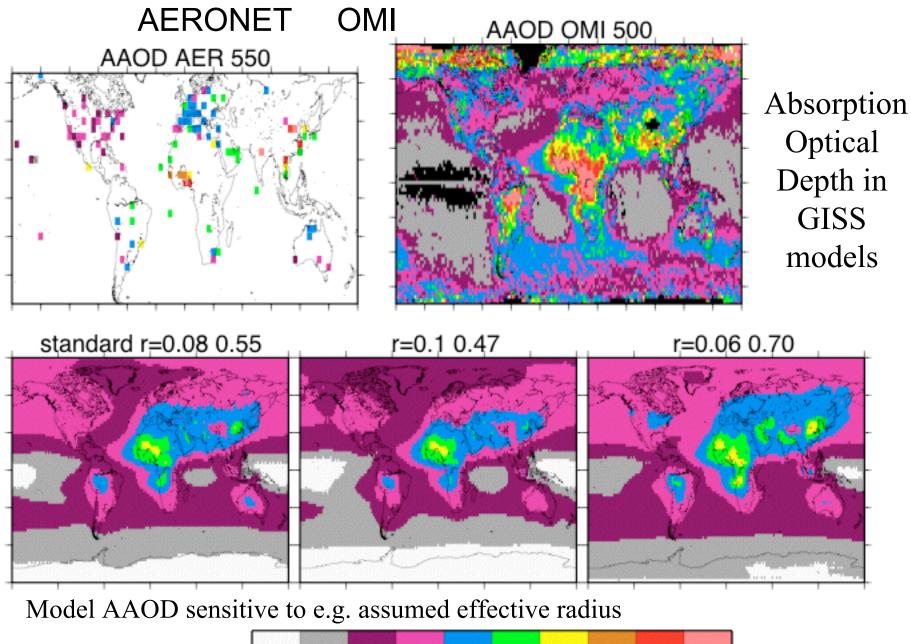
BC surface concentration in AeroCom models

BC surface concentration assessment: model/observed

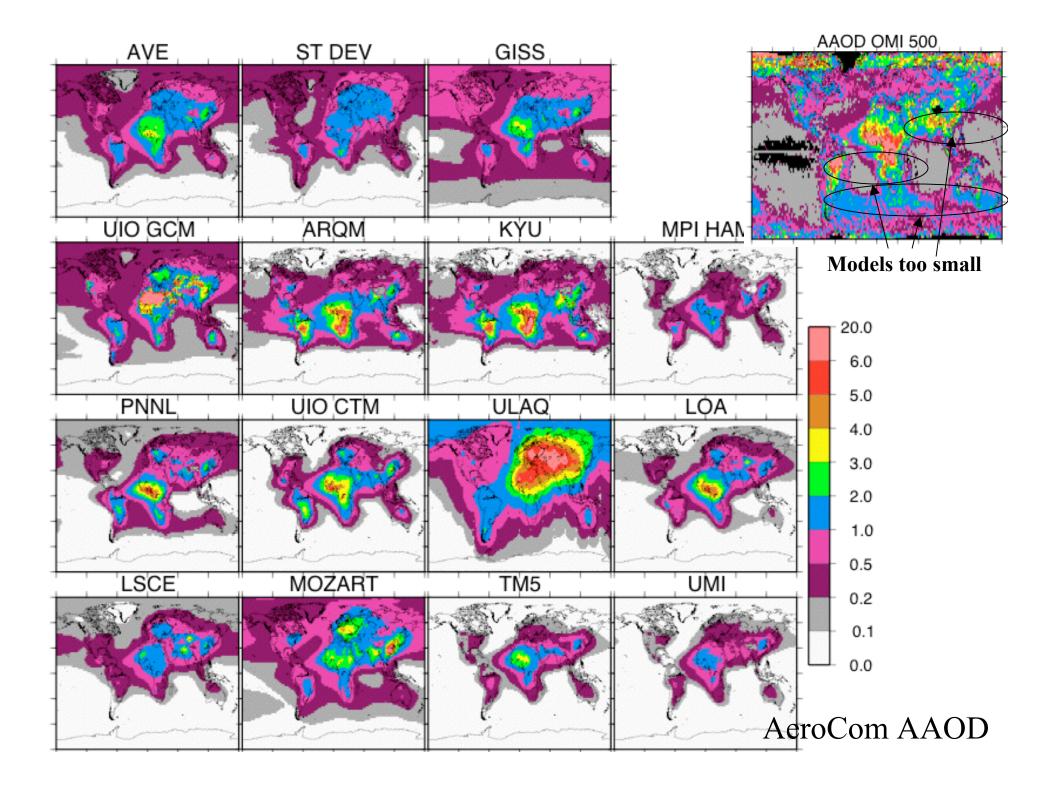
BC surf Nam 27	BC surf Eur 15	BC surf Asia 9	BC surf row 7
0.81	0.67	0.53	3.0
0.70	0.82	0.43	2.6
0.70	0.66	0.50	2.9
0.87	0.74	0.55	4.7
0.77	0.62	0.49	2.3
0.83	0.69	0.54	3.3
0.78	0.67	0.51	2.7
	surf Nam 27 0.81 0.70 0.70 0.87 0.77 0.83	surf surf Nam Eur 27 15 0.81 0.67 0.70 0.82 0.70 0.66 0.87 0.74 0.77 0.62 0.83 0.69	surf surf surf Nam Eur Asia 27 15 9 0.81 0.67 0.53 0.70 0.82 0.43 0.70 0.66 0.50 0.87 0.74 0.55 0.77 0.62 0.49 0.83 0.69 0.54


For GISS, EDGAR is better in Europe. Longer lifetime slightly better near source regions.

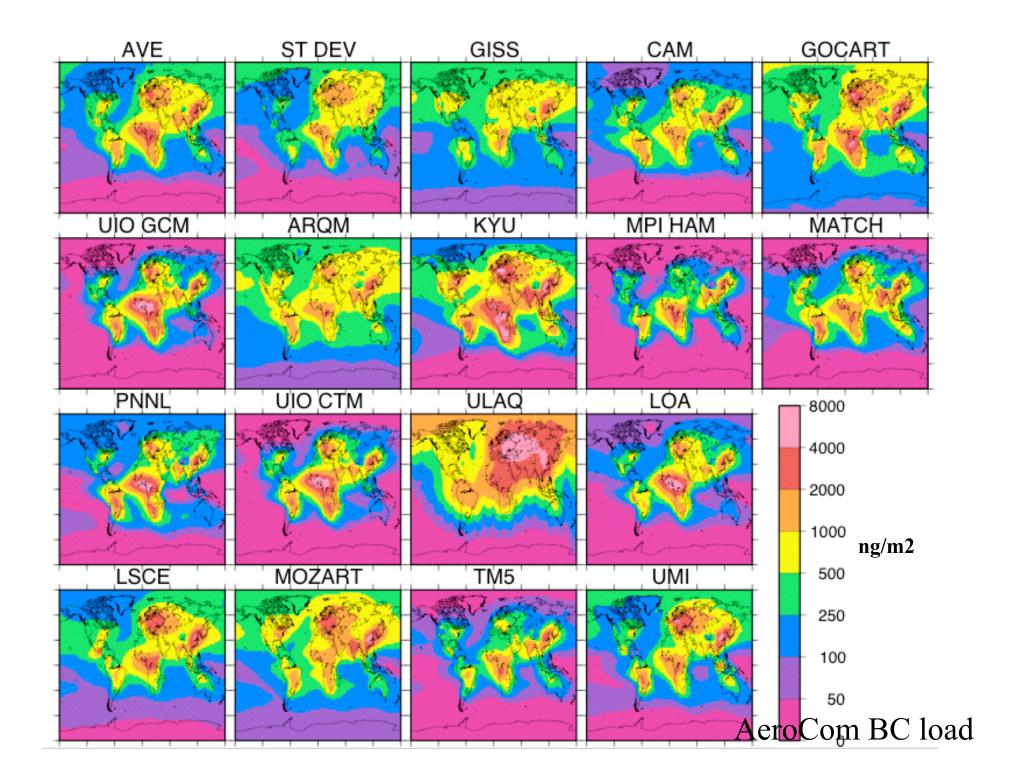
	n	BC	BC	BC	BC
		surf	surf	surf	surf
		Nam	Eur	Asia	other
		27	15	9	7
	GISS	0.81	0.65	0.70	2.7
	ARQM				
	CAM	1.6	2.2	0.52	2.0
	GOCART	1.2	2.1	0.65	1.3
→	KYU	7.7	9.7	1.3	5.2
	LOA	0.89	1.2	0.31	0.52
	LSCE	0.61	3.0	0.54	0.82
	MATCH	1.3	3.0	0.32	1.1
	MOZGN	2.4	3.8	1.2	2.4
	MPIHAM	1.5	0.73	0.74	0.40
	PNNL				
	TM5	1.8	1.0	1.1	1.2
	UIOCTM	0.72	1.6	0.60	0.43
	UIOGCM	0.88	2.9	0.68	1.8
	UMI	0.81	4.8	0.82	0.89
	ULAQ	0.75	3.0	1.8	1.8
	Ave	0.80	2.8	1.6	1.6

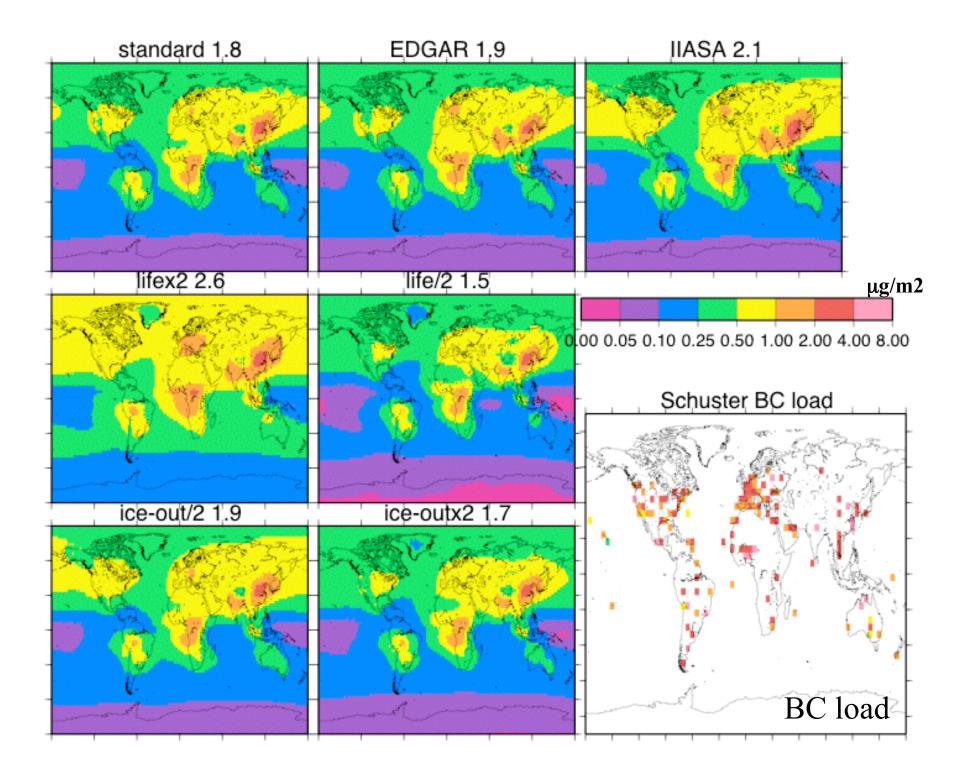

Most models are larger than observed surface concentrations, except in N. America

Observed Absorption Aerosol Optical Depth


AAOD from AERONET v2 1998-2004 OMI AAOD 2005-2007 From OMAERUVd.003 product Processed with Giovanni

Smaller: South America Larger: Europe, SE Asia


AAOD assessment: model/observed


n GISS Sens.	AAOD AER N Am 44	AAOD AER Eur 41	AAOD AER Asia 11	AAOD AER S Am 7	AAOD AER Afr 5	AAOD AER row 21	AAOD OMI N Am	AAOD OMI Eur	AAOD OMI Asia	AAOD OMI S Am	AAOD OMI Afr	AAOD OMI ROW
std	1.0	0.83	0.49	0.59	0.35	0.88	0.73	1.4	0.74	0.29	0.40	0.28
r=.1	0.86	0.66	0.40	0.49	0.28	0.71	0.60	1.2	0.61	0.24	0.32	0.22
r=.06	1.4	1.1	0.68	0.77	0.47	1.8	1.0	1.8	1.0	0.38	0.53	0.38
AERONET OMI												
n	AAOD	AAOD	AAOD	AAOD	AAOD	AAOD	AAOD	AAOD	AAOD	AAOD	AAOD	AAOD
AERO	AER	AER	AER	AER	AER	AER	OMI	OMI	OMI	OMI	OMI	OMI
COM.	N Am	Eur	Asia	S Am	Afr	other	N Am	Eur	Asia	S Am	Afr	ROW
	44	41	11	7	5	40						
GISS	1.0	0.83	0.49	0.59	0.35	0.88	0.73	1.4	0.74	0.29	0.40	0.28
ARQM	0.79	0.36	0.30	0.42	0.25	0.44	0.50	0.61	0.40	0.22	0.23	0.19
CAM												
GOCART												
KYU	1.4	0.48	0.44	1.8	1.2	0.64	0.76	0.69	0.59	0.83	1.3	0.28
LOA	0.57	0.56	0.42	0.44	0.70	0.44	0.32	0.95	0.44	0.25	0.48	0.18
LSCE	0.42	0.55	0.48	0.20	0.18	0.34	0.29	1.1	0.51	0.11	0.21	0.16
MATCH												
MOZGN	1.5	1.3	0.99	0.60	0.60	0.77	0.82	2.6	1.4	0.32	0.40	0.35
MPIHAM	0.39	0.21	0.29	0.43	0.35	0.21	0.21	0.29	0.32	0.22	0.35	.082
PNNL	0.73	0.55	0.49	0.76	0.78	0.42	0.35	0.91	0.48	0.41	0.58	0.20
TM5	0.41	0.32	0.29	0.24	0.20	0.31	0.21	0.48	0.31	0.12	0.22	0.11
UIOCTM	0.62	0.67	0.46	1.1	0.61	0.57	0.37	1.1	0.53	0.57	0.54	0.19
UIOGCM	1.3	1.1	0.75	0.82	0.54	0.80	0.82	1.8	1.0	0.46	0.42	0.36
UMI	0.32	0.29	0.29	0.21	0.21	0.22	0.17	0.44	0.28	0.095	0.19	0.086
ULAQ	1.4	2.6	2.1	1.1	0.52	1.1	1.1	6.7	1.5	0.62	0.48	0.71
Ave	0.82	0.75	0.60	0.67	0.51	0.52	0.50	1.5	0.64	0.35	0.45	0.24

Most models are smaller than retrieved, except in

Europe (> OMI)

Models too small in Asia and biomass burning regions

Load ROW 43 49 10 9 5 54 54 54 Std 0.29 0.35 0.49 0.22 0.22 0.17 EDGAR 0.30 0.37 0.45 0.21 0.22 0.20 IIASA 0.33 0.38 0.60 0.21 0.23 0.21	1	BC 1	BC	BC	BC	BC	BC
43 49 10 9 5 54 Std 0.29 0.35 0.49 0.22 0.22 0.17 EDGAR 0.30 0.37 0.45 0.21 0.22 0.20 IIASA 0.33 0.38 0.60 0.21 0.23 0.21							
Std 0.29 0.35 0.49 0.22 0.22 0.17 EDGAR 0.30 0.37 0.45 0.21 0.22 0.20 IIASA 0.33 0.38 0.60 0.21 0.23 0.21		1 1		I		Afr	
EDGAR 0.30 0.37 0.45 0.21 0.22 0.20 IIASA 0.33 0.38 0.60 0.21 0.23 0.21	4	43 4	49	10	9	5	54
IIASA 0.33 0.38 0.60 0.21 0.23 0.21	Std (0.29 (0.35	0.49	0.22	0.22	0.17
	EDGAR (0.30 (0.37	0.45	0.21	0.22	0.20
	IIASA (0.33 (0.38	0.60	0.21	0.23	0.21
Lifex2 0.38 0.43 0.56 0.27 0.29 0.24	Lifex2 (0.38 (0.43	0.56	0.27	0.29	0.24
Life/2 0.25 0.30 0.43 0.21 0.20 0.14	Life/2 (0.25 (0.30	0.43	0.21	0.20	0.14
Ice/2 0.31 0.36 0.50 0.23 0.23 0.18	Ice/2	0.31 (0.36	0.50	0.23	0.23	0.18
Ice x 2 0.27 0.32 0.46 0.22 0.21 0.16	Ice x 2 (0.27 (0.32	0.46	0.22	0.21	0.16

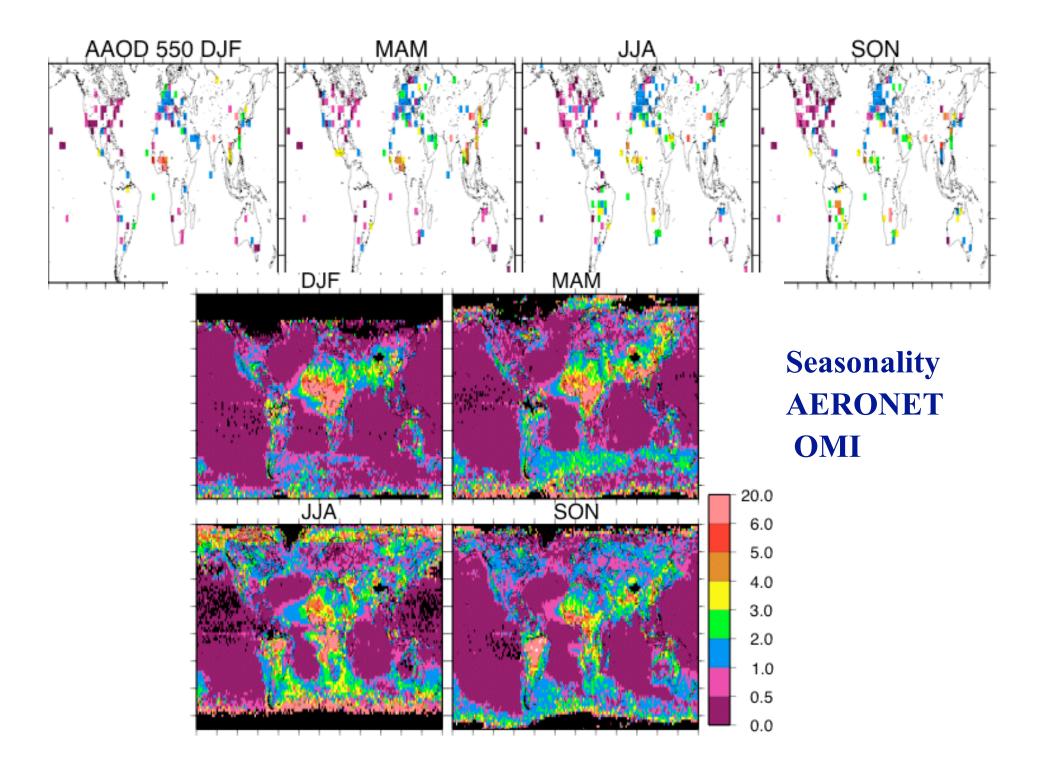
BC load assessment: model/observed

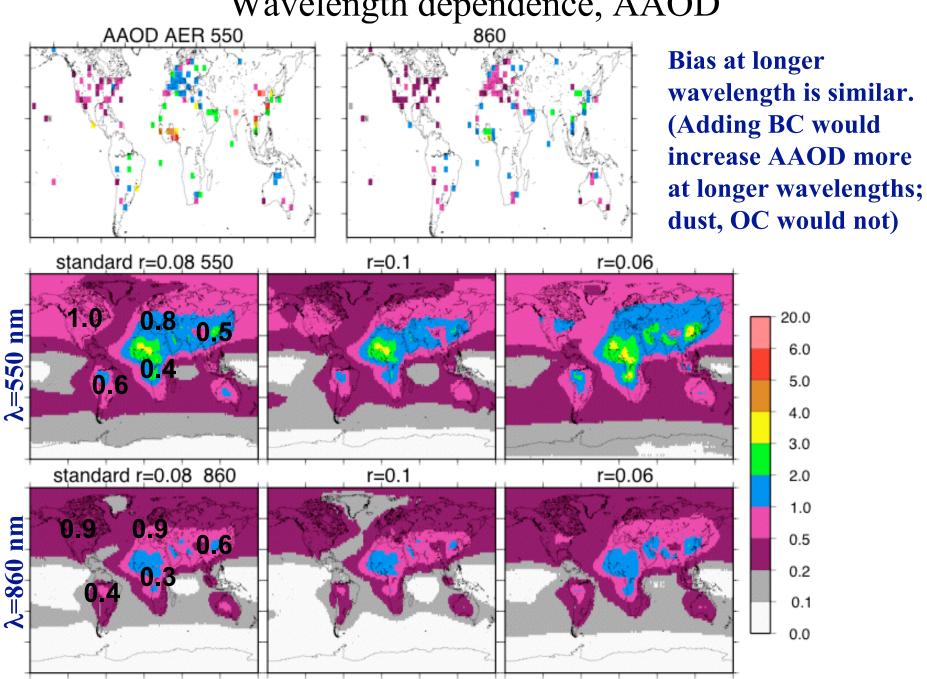
	BC	BC	BC	BC	BC	BC
	Load	Load	Load	Load	Load	Load
	N Am	Eur	Asia	S Am	Afr	ROW
	42	49	10	9	4	56
GISS	0.31	0.25	0.52	0.30	0.76	0.42
ARQM	0.40	0.39	0.49	0.38	0.38	0.34
CAM	0.28	0.32	0.42	0.42	0.37	0.26
GOCART	0.47	0.63	0.72	0.42	0.71	0.32
KYU	1.1	1.1	0.81	0.53	2.1	0.56
LOA	0.25	0.33	0.37	0.26	0.63	0.35
LSCE	0.29	0.52	0.72	0.28	0.29	0.30
MATCH	0.30	0.38	0.35	0.49	0.47	0.29
MOZGN	0.58	0.70	0.86	0.35	0.50	0.37
MPIHAM	0.19	0.17	0.41	0.30	0.36	0.17
PNNL	0.26	0.31	0.37	0.44	0.63	0.30
TM5	0.27	0.23	0.42	0.24	0.31	0.19
UIOCTM	0.25	0.37	0.43	0.38	0.78	0.42
UIOGCM						
UMI	0.25	0.56	0.71	0.43	0.36	0.23
ULAQ	0.33	1.5	1.5	0.41	0.30	0.69
Ave	0.37	0.52	0.60	0.37	0.60	0.35

Model bias is generally worst in N. Am., S. Am., and ROW

Survey

Emissions


- Energy
- Biomass burning
- Treatment of aging
 - Explicit aging rate, fixed solubility or chemical microphysics?
 - Any aging effects on optics (e.g. RH effect or chemical/microphysical effect)?
- Treatment of ice/snow removal
- BC density
- (Initial) particle size
- Refractive index


Conclusions: Average model compared to observations in regions

- Europe:
 - 2.8 surface concentration
 - **1.5 OMI AAOD**
 - 0.75 AERONET AAOD
 - 0.5 Load Schuster
- North America:
 - 0.8 surface concentration and AERONET AAOD
 - **0.5 OMI AAOD**
 - 0.4 Load Schuster
- Asia:
 - 1.6 surface concentration
 - 0.6 AAOD OMI, AAOD AERONET, Schuster BC load
- South America (no surface concentration data)
 - 0.7 AERONET AAOD
 - 0.4 OMI AAOD, Schuster BC load
- Africa (no surface concentration data)
 - 0.5 to 0.6

Conclusions

- To some extent bias differences to the datasets (OMI, AERONET, surface concentrations) may be from different observational periods. I will check for observational trends.
- Models tend to have surface amount too large but column amount too small. Problem with removal or vertical transport...?
- OMI AAOD indicates larger AAOD over southern oceans, Southern Asia, biomass burning regions than in models
- Standard deviation among models is larger than the mean in northern Eurasia and parts of the Arctic
- The GISS sensitivity studies do not span the range of AeroCom model results. Suggests major differences in transport/removal, as well as effects of aerosol microphysics in some of the models.

Wavelength dependence, AAOD