poster sessions modeling (13)data (12)impact (7)

8th AeroCom meeting Princeton, NJ, 2009

MODELING

○ MONDAY

MODELING

o Bian

 evaluation of aerosol fine mode simulations with GOCART

MODELING

\circ Chin

lidar ratio & aerosol type, CALIPSO vs GOCART

GOCART AOD & track 2006-08-12T03-39-07ZN

o Frontoso

Multi-scale integration in EUCAARI

MODELING

O Ginoux

aerosol modeling with GFDL AM3

MODELING

\circ Kim

• the NCEP dust aerosol modeling system

MODELING

o Magi

organic carbon absorption over biomass burning regions

MODELING

o Penner

 cirrus clouds in a global climate model with a statistical cloud scheme

new cirrus scheme based on K/B 2008 introduces PDFs for temperature and saturation ratio to mimic sub-grid scale mesoscale variability:

$dP_T/dT, dP_S/dS$

cloud fraction determined by portion of grid with *S* above critical supersat.

Aviation forcing for long-lived cirrus effects:

Penner et al., 2009:	-0.16 W/m ²
This work:	-0.09 W/m ²
This work with Lee 2009:	-0.08 W/m ²

Comparison of new mass-only model with Liu et al. (2009) model, CAM3, and obs:

	NEW	Liu	CAM	Obs.
LWP g m ⁻²	76	141	121	50-87
IWP g m ⁻²	21	22	16	27
SWCF Wm ⁻²	-51	-59	-57	-47 -54
LWCF W m ⁻²	27	32	31	29-30
netCF W m ⁻²	-25	-27	-24	
CLDTOT %	67	78	59	65-67
CLDHGH %	38	57	32	21

MODELING

O Nowottnick

Saharan dust event during the NASA TC-4

o Righi

• the global aero model ECHAM5/MESSy1-MADE

MADE describes the aerosol population with 3 log-normal modes and simulates particle concentration, chemical composition and size distribution. It includes several aerosol species, microphysical processes and tropospheric aerosol precursor chemistry

□ The impact of international shipping on aerosol and climate is shown as an example of application

The extension MADE-soot describes the aerosol population with 7 log-normal modes and simulates particle concentration, chemical composition, size distribution and mixing state of BC and dust

MADE-soot has been applied to study the population of potential ice nuclei (BC and dust particles) and their aging processes

O Rumbold

 source-receptor studies of global aerosol transport

• Tsigaridis

 simplicity versus accuracy In global Secondary Organic Aerosol (SOA) modeling

MODELING

Welton

comparisons of aerosol type from CALIPSO feature mask and GEOS-5

O TUESDAY

DATA

o Ganguly

inferring aerosol composition by combining AERONET, MPLNET and CALIOP

AM2

MODIS

AM2 and AERONET

AOD at 0.5 μm

• Gross

 using raman lidar ratios to explore droplet size and indirect effects

DATA

○ Kinne

a generic global monthly aerosol climatology

2D maps for 'AOD', 'SSA' and 'g'

DATA

Leptoukh
 Giovanni for HTAP

2 options to get harmonized HTAP data into Giovanni:

- 1. "Pre-process" data at NASA-GSFC to harmonize data
- 2. Get data directly from Juelich HTAP archive via WCS on-the-fly harmonization @Juelich

DATA

○ Ogren

- climatology of near surface aerosol scattering and absorption
- emphasis on radiative properties
- network is expanding
- data available through NILU
- current station-years of data:
 - scattering (146),
 - bsorption (64)
 - backscattering (71)
 - sub-micon scatt/ fraction (64)

Note: aerosol light absorption is not lognormally distributed

years of data

standard deviation

Ottaviano

polarized observations of aerosols and clouds

• Paradise

 regional representation investigations with AMAPS

how does the local 17.6 km MISR v22 aod value compare to regional averages at

- at 100*100 km ?
- at 300*300 km ?
- at 500*500 km ?
- at 900*900 km ?

Salustro MODIS Deep Blue

Arabian Peninsula

DATA

O Schuster

remote sensing of water uptake

Once component fractions are known, can compute many aerosol parameters

1.Volume fraction of water 2.Dry Aerosol Volume/Mass 3.Hygroscopic Growth Factor 4.Aerosol Liquid Water Path 5.BC mass 6.Black Carbon Specific

Absorption

7.Dry Aerosol Optical Depth 8.Dry Single Scatter Albedo

Regional hygroscopic growth is consistent with climate

AERONET all-points, level 2.0 dataset, 10 retrievals min.

http://asd-www.larc.nasa.gov/~gregs/Beta_dstrbtn_20090220/

O Thomas

• What can the GRAPE aerosol dataset tell us about the long term global AOD trend ?

Global mean ocean AOD

Welton MPLNET Products for AeroCom validations

- long term site
- ☆ 🛛 field campaign
- former field campaign, planned/proposed site
- ship cruise

* most sites co-located with AERONET

OWEDNESDAY

IMPACT

Colarco

aerosol impacts in GEOS4/5 GCM simulations

"Operational" ¼° global aerosol forecasts
 Preliminary aerosol-climate simulations
 Evaluation of hindcast simulations (GEOS-4)

Session 3 IMPACT Li understanding dust accumulations over Antarctica LGM/current ratio of dust concentration

IMPACT

o Lu

assessing the impact of aerosol on climate using the NCEP CFS

- NCEP CFS (GFS coupled with MOM3) CMIP experiments using different aerosol data sets
- Aerosols are found to alter the atmospheric circulation through their direct radiative forcing

187

IMPACT

○ Myhre

aerosol direct net radiative forcing efficiency at the surface

IMPACT

Radiative forcing (mWm⁻²)

IMPACT

O Vuolo

 evaluation of aerosol radiative forcing with the LMDZ-INCA

AOD at 550nm

TOA SW CS Flux

IMPACT

○ Yuan

impact of aerosol on NOx production by lightning

