

Aerosol properties vary strongly with time and location – e.g. aerosol optical depth Aerosol introduces one of the largest uncertainty in predictions of the Earth's climate. One reason is an inaccurate representation of the variability of aerosol properties on temporal and spatial scales. Here, global fields for the most important aerosol property are compared: the mid-visible optical depth (a measure for the attenuation of sun-light). Monthly averages of a model composite are compared to a satellite composite and yearly averages further demonstrate differences among models and data.

Global patterns of aerosol optical depth A comparison of model simulations and satellite retrievals

Stefan Kinne and Authors MPI for Meteorology, Hamburg, Germany

Simulations							
Models	Resolution	Simulation	Authors				
♦ UL- ULAQ (GCM)	10/22.5deg	3yr avg	Pitari				
 GI - GISS (GCM) 	4.0/5.0deg	3yr avg	Koch / Tegen				
+ GO - GOCART (CTM)	2.0/2.5deg	(90)	Chin / Ginoux				
• GR - Grantour (GCM)	5.0/5.0deg	1yr avg	Herzog / Penner				
+ EC - ECHAM4 (GCM)	3.8/3.8deg	50yr avg	Feichter / Schulz				
NC- NCAR (GC/TM)	1.9/1.8deg	(95-01)	Collins / Rasch				
 CC- CCSR (CTM) 	2.8/2.8deg	(90)	Takemura / Nakajima				
• MI - MIRAGE (GC/TM)	2.8/2.8deg	(6/94-5/95)	Ghan / Easter				
[sulfate, organic carbon, black carbon, dust, sea-salt processing]							

Satellite Data-Sets

Satellites	Method	Data-Period	Region	Authors
• MO - MODIS (.55µm)	VIS/n-IR refl	(2001)	global	Chu / Kaufman
 A,n9 - AVHRR (.63μm) 	VIS reflect.	(1985-1988)	ocean	Stowe (PATMOS)
 A,g9 - AVHRR (.55μm) 	VIS/n-IR refl.	(1985-1988)	ocean	Mishchenko / Geo
• A,g - AVHRR (.55mm)	VIS/n-IR refl.	(1984-2001)	ocean	Mishchenko / Geo
 TO - TOMS (.55 μm) 	UV-reflect.	(1979-2001)	global	Torres
◆ PO - POLDER (.87µm)	n-IR refl./pol.	(1996-1997)	global	Goulomb/ Tanre
[data. if not for.55µm.		14 4 - OOOD	1 Ar	astrom parameter 1

special combination:

• Mt - MODIS (.55µm) primary choice, TOMS (.55 µm) if MODIS data are not available

