AERONET data samples

S. Kinne MPI-Met Hamburg

AERONET-group NASA-Goddard

AERONET

Properties

- (1-ω₀) τ

- optical depth
- absorption (better than ss-albedo ω_0)
- water vapor
- size-distribution [22 radii-bins between .5 and 15µm]
 - effective radius
 - aerosol (wet) mass

3 sample sites

- Goddard (urban)
- Cape Verde (dust) Mongu (biomass)

Mongu

Cape Verde

Goddard

size-distributions

monthly variations

direct forcing

... atmospheric = top of atm - surface

Urban

- stronger if polluted
- sum. max
- Biomass
 - strong at surf. and in atmosphere
- Dust
 - large, as opt depths are large
- Clouds
 - reduce forcings
 (unless below aerosol !)

Statistics at >100 stations!

effective radius

- seasons -

largest sizes are associated with dust

smallest sizes are at biomass burning and urban pollution

absorption τ (1- ω_0)

- seasons -

Europe aerosol appears more absorbing than for eastern US

absorption max during biomass burn. in tropics

where to get data

- website: <u>http://aeronet.gsfc.nasa.gov</u>
 - 'quality' level 2.0 data are recommended
 - concurrent MODIS data are available
 - 5 day-back trajectories can be provided
 co-located micro-pulse lidar at 11sites
- Quick-look statistics of aerosol properties at ca. 100 sites (based on 1998-2001 data) are available on request from kinne@dkrz.de