Surface data from the GAW World Data Centre for Aerosols and IMPROVE

Julian Wilson Institute for Environment and Sustainability, Joint Research Centre, Ispra, Italy.

Bret A. Schichtel and William C. Malm National Park Service and CIRA, Colorado State University

> Rodger B. Ames CIRA, Colorado State University

Robert A. Eldred and Lowell L. Ashbaugh Crocker Nuclear Laboratory, University of California, Davis

Marc L. Pitchford NOAA, Las Vegas

What is GAW?

- The Global Atmosphere Watch (GAW) was founded in 1989 by WMO, thereby consolidating the Global Ozone Observing System (GO3OS) and the Background Air Pollution Monitoring Network (BAPMon) into a single network.
- The objectives of GAW are:
 - to provide reliable long-term observations of the chemical composition of the atmosphere and related parameters in order to improve our understanding of atmospheric chemistry,
 - and to organize assessments in support of formulating environmental policy.

The GAW Aerosol programme

The SAG Aerosol recommends that the GAW aerosol programme include *•for regional stations any one, or more of the following:*

optical depth
mass (preferably in two size fractions)
major chemical components in two size fractions
light scattering coefficient

•for global stations as many as possible of the following:

•optical depth

•mass in two size fractions

•major chemical components in two size fractions

light scattering & hemispheric backscattering coefficients at various wavelengths
light absorption coefficient

•aerosol number concentration

•cloud condensation nuclei number concentration at 0.5% supersaturation
•diffuse, global and direct solar radiation

• intermittently:

aerosol size distribution

•detailed size fractionated chemical composition

•dependence of aerosol properties on relative humidity

•CCN spectra at various supersaturations

•LIDAR measurements and other altitude profiles of aerosol properties.

Structure of the GAW Monitoring Component (courtesy WMO AREP)

Data Flow to and from WDCA

Data Submission and Retrieval from WDCA

Data Submission Data and Metadata Format: NARSTO data exchange standard (DES) extended CSV. NARSTO DES includes all the file metadata. Additional files provide more detailed information. Submission: Data are sent by ftp or email Quality Analysis at WDCA: NARSTO quality analysis system – checks conformity with the DES and internal integrity of the data. QA summary added to each file archived, only posted to ftp site when no errors/warnings.

Data Retrieval

Procedure:

Data available online from WDCA server. Data also supplied by email <u>Catalogue:</u> Static catalogue on old WDCA server

Archive: Both NARSTO and non-NARSTO archives accessible via ftp.

<u>Data:</u>

Data in NARSTO DES format.

Products:

Limited site by site analyses – time histories etc, are available from the new site.

WDCA contributing stations: 01.03.2003

GAW aerosol parameters for use in AEROCOM

•optical depth –

GAW PFR (Chris Werhli), Aeronet (Stefan Kinne) •major chemical components in two size fractions U. Miami, CaPMON, EMEP, IMPROVE (COSAM, IPCC), European Aerosol Climatology (Putaud et al.) •light scattering coefficient •light absorption coefficient •aerosol number concentration

Aerosol Chemistry: NSS sulfate in the Pacific.

Non-sea salt sulfate (μ g.m⁻³) time series for pacific transect and S. Ocean sites in COSAM. data courtesy of Dr. D Savoie, U. Miami

European Aerosol Phenomenology Report J-P Putaud et al.

physical and chemical characteristics of particulate matter at kerbside, urban, rural and background sites in Europe.

Jean-P. Putaud¹, Rita Van Dingenen¹, Urs Baltensperger², Erika Brüggemann³, Aurélie Charron⁴, M.-Cristina Facchin², Stefano Decesari², Sandro Fuzzi³, Robert Gehrig⁶, Hans-C. Hansson¹, Roy M. Harrison⁴, Alan M. Jones⁴, Paolo Lug², Cumid Lorber², Willy Maenhaut¹⁰, Nikolas Mikalopoulos²¹, Korrad Miller², Finn Palmgren¹², Xavier Querol¹³, Sergio Rodriguez¹³, Jürgen Schneider², Gerald Spindler⁴, Harry ten Brink⁴, Peter Tunved², Kjell Torseth³, Ernest Weingartner, Alfred Wiedensohler², Peter Wahlm², Tanka Res¹

¹ European Commission, Joint Rescarch Centre, Ispra, Institute for Environment & Sustainability, Italy
 ² Paul Scherrer Institut, Laboratory of Atmospheric Chemistry, Villigenay, Switzerland
 ⁴ University of Birmingham, Division of Environmental health and Risk Management, Birmingham, UK
 ⁴ Istituto di Scienze dell'Atmosfera e dell'Occano, Consiglio Nazionale delle Recerche, Bologna, Italy
 ⁴ Swiss Federal Laboratories for Materials Testing and Research, Dibendorf, Switzerland
 ⁴ Istituto ef Applied Environmental Aesarch, University of Stockholm, Sockholm, Sweden
 ⁶ Laboratorier de Météorologie Physique, Université Blaise Pascal, Aubière, France
 ⁹ Unwelbundesam, Wien, Austria
 ¹⁰ Ghent University, Istitute for Nuclear Sciences, Department of Analytical Chemistry, Gent, Belgium
 ¹⁰ Environmental Chemica Hoorary, University of Crete, Herakling, Geneee

¹⁴ Environmental Chemical Processes Laboratory, University of Crete, Heraklion, Greece ¹² National Environmental Research Institute, Rossikle, Denmark ¹³ Instituto de Ciencias de la Tierra, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain ¹⁴ Netherlands Energy Research Foundation (ECN), Peten, The Netherlands ¹⁵ Norveguin Institute for Air Research (NULU), Kjeller, Norway Compilation of:

- PM2.5 and PM10 masses and chemical composition
- •Aerosol size distributions
- Size segregated aerosol chemical composition.

At kerbside, urban and rural and background sites in europe

http://ies.jrc.cec.eu.int/Download /cc

EUR 20411 EN 2002

European Aerosol Phenomenology Report

Sites with co-incident AOD, light-scattering, light absorption, chemical composition for 2000

Region	Station	AOD	Chemistry	Light Scat.	Light Abs.	Lidar
Arctic	Ny Alesund	>	>	>	~	>
Arctic	Point Barrow	>	?	>	>	
Europe	Mace Head	>	?	>	>	
Europe	Hohenpeissenberg	>	>	>	>	
Europe	Ispra	>	>		>	
Europe	Melpitz	?	>	>	>	
N. America	Bratts Lake	2001	>			
N.America	Bondville	?	?	>	>	
N.America	Wyoming	?	?	>	>	profiles
S. America	Alta Floresta	>	~	?	>	
S. America	Balbina	>	~	?	>	
Asia	Kwanju/Kosan	>	~	>	>	
S. Oceans	Cape Grim	>	~	?	>	
Antarctic	S. Pole	>	?	>	>	
Antarctic	Neumayer	?		>	>	
F. Trop	Jungfraujoch	>	¥	>	>	
F. Trop	Mount Waliguan	¥	v	?	v	
F. Trop	Mauna Loa	>	¥	>	>	~

Also Ace-Asia (Kwanju), TRACE-P. Note NO African Sites!

Local 'closure' studies

- 1. Where chemistry/composition compare with the modelled aerosol compsition/loading.
- 2. Where scattering and absorption, compare with modelled extinction and SSA, and also with that calculated from chemistry/composition data.
- 3. Where AOD, compare surface extinction with column AOD.
- 4. Chemistry/composition data 24hr, AOD hourly, but typically morning and or afternoon. Can therefore use the high resolution scattering & absorption to determine if there are strong diurnal cycles that may bias the comparisons.

Light Scattering & Absorption: hourly means Hohenpeissenberg 47.800 N, 11.017 E, 985.0 m asl

Light Scattering & Absorption: diurnal cycle Hohenpeissenberg 47.800 N, 11.017 E, 985.0 m asl

Light Absorption vs AOD 500nm, Hohenpeissenberg 1999.

IMPROVE Monitoring Program

The Interagency Monitoring of Protected Visual Environments

•Established in 1985 to aid the creation of Federal and State implementation plans for the protection of visibility in Class I areas - 1977 CAA amendments

•A cooperative measurement effort governed by representatives from Federal and regional-state organizations

•Objectives:

-Establish current visibility and aerosol conditions in federal class I areas

–Identify chemical species and emission sources responsible for existing man-made visibility impairment in FCIA

–Document long-term trends for assessing progress towards the national visibility goal to FCIA

–With the enactment of the <u>Regional Haze Rule</u>, to provide regional haze monitoring representing all visibility-protected FCIA

•Key participant in visibility-related research:

IMPROVE Monitoring

- Monitoring Began in March 1988
- Aerosol particle sampling/analysis for six major species & trace constituents to aid in source attribution (24 hour samples twice weekly; every 3rd day starting in 2000)
- Optical extinction by transmissometer &/or scattering by nephelometer (hourly) plus absorption on particle filters (24-hour)
- Scene color photography to document scenic appearance (typically 3 photos/day)
 - photographic spectrums of a range of visibility conditions are generated from 5 years of photos

IMPROVE Aerosol Samplers

- •Four independent sampling modules
- •Prior to 2000, two 24 hour samples were collected twice a week, after 2000, samples collected every three days.

Module	Filter	Size	Variable	Analysis
А	Teflon	PM2.5	mass	gravimetric
			Na-Mn	Proton Induced X-Ray
				Emission (PIXE)
			Fe-Pb	X-ray Fluorescence (XRF)
			total H	Proton Elastic Scattering
			optical absorption	Hybrid Integrating
				Plate/Sphere (HIPS)
В	Nylon	PM2.5	sulfate, nitrate	Ion Chromatography
C	Quartz	PM2.5	OC, EC in 8 fractions	Thermal Optical Reflectance
D	Teflon	PM10	mass	Gravimetric

•Began with 20 sites in 1988, today 163 monitoring sites are in operation

•116 monitoring sites collected some data in 2000

EUROPEAN COMMISSION JOINT RESEARCH CENTRE

Aerosol Spatial Patterns 1996-1998

IMPROVE aerosol data are used to estimate haze (b_{ext}) in class I areas (rural United States)

Reconstructed light extinction equation:

 $LightExtinction(b_{ext}) = 3f(RH)[Amm.sulfate] + 3f(RH)[Amm.nitrate]$

+4[Organic]+10[LightAbs.Carbon]+1[Soil]+10

The aerosol types are calculated from the speciated aerosol data, e.g. Amm Sulfate = $4.125 \times Sulfur$. The leading coefficient are extinction efficiencies [m²/g] and the f(RH) factor accounts for water uptake by the sulfate and nitrate species.

The IMPROVE reconstructed b_{ext} contains a number of assumptions, however, overall it seems to work

Reconstructed B_{ext} Spatial Patterns 1996-98

IMPROVE Derived AOD Compared to Measured Values from 1995–1997 (Corbin *et al.*, 2002)

• AOD 670 nm – measured optical depth from the Aerosol Robotic Network (AERONET) instrument at Goddard Space Flight Center

•AOD₁ - IMPROVE derived AOD at Washington, D.C. calculated by multiplying the reconstructed b_{ext} by the boundary layer dept at for the years 1995–1997.

- $\begin{array}{c}
 1 \\
 -1:1 \text{ line} \\
 = 0.48 \\
 0.1 \\
 0.01 \\
 0.01 \\
 0.01 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.$
- The data were screened for clouds.
- •The correlation of the ranks is 0.55

