

Aerosol Modelling

"for measurement people"

AeroCom Workshop 2010

Oxford

Philip Stier

Department of Physics

Atmospheric, Oceanic and Planetary Physics

Oriel College

University of Oxford

Aerosol Models – A Black Box

Questions (by François-Marie Bréon):

- What is the typical resolution of models?
- How do models handle variability within grid box?
- · How do models handle size distributions?
- What happens in a cloud?
- · How are defined the sources?
- What is the lifetime of aerosol in models.
 Is it significantly different among aerosol types?
- How do you estimate injection heights?
- Are the aerosol well mixed within "mixing" layer?
- Is the mixing layer height well reproduced by transport models?

ne

- How are the aerosol optical properties computed?
- What are the main sources of errors?

Aerosol Modelling

Global Aerosol Cycles

Aerosol Modelling

Outline

Host Models

- Box-, Parcel-, Single Column-, Chemical Transport-, Regional Circulation-, Global Circulation Models
- Offline, Online, Nudged, AMIP, Climate Simulations
- · Resolution, resolved and unresolved processes parameterisations

Aerosol Models

- Bulk Models
- Moment-Based
- Sectional Models

Sources

- Primary emission
- Secondary formation

Transport

Advection, Turbulence, Convection

Effects

- Radiative Properties
- Aerosol activation and ice nucleation
- Radiative "effect", "forcing", "feedback"

Removal

- Dry deposition & sedimentation
- Scavenging

Outline

Host Models

- Box-, Parcel-, Single Column-, Chemical Transport-, Regional Circulation-, Global Circulation Models
- Offline, Online, Nudged, AMIP, Climate Simulations
- · Resolution, resolved and unresolved processes parameterisations

Aerosol Models

- Bulk Models
- Moment-Based
- Sectional Models

Sources

- Primary emission
- Secondary formation

Transport

Advection, Turbulence, Convection

Effects

- Radiative Properties
- Aerosol activation and ice nucleation
- Radiative "effect", "forcing", "feedback"

Removal

- Dry deposition & sedimentation
- Scavenging

Atmospheric Models

Atmospheric circulation models of based on fundamental physics:

Numerical solution of fundamental physical equations:

- conservation of momentum
- conservation of mass
- conservation of energy
- equation of state

Additional sub-models for:

- clouds cover
- cloud microphysics + precipitation
- aerosols
- radiative transfer
- chemistry
- land surface processes
- vegetation
- carbon cycle
- cryosphere
- . . .

UNIVERSITY OF

Dictionary of Atmospheric Models

Box Model

0D, no transport, no or external forcings

Parcel Model

0D, moved by prescribed external forcings

Single Column Model (SCM)

1D, vertical transport no or external forcings (e.g. campaign)

Chemical Transport Model (CTM)

3D transport, regional (boundary conditions) or global, **met-fields diagnostic** from GCM

Regional Circulation Model

3D transport, regional, **met-fields prognostic** but with boundary conditions from GCM

Global Circulation Model (GCM)

3D transport, global, **met-fields prognostic**, potentially assimilated or "nudged" to assimilated meteorological analysis data

Aerosol Modelling: Host Models

Resolution of Atmospheric Models

Global Circulation Model (GCM) Climate model resolution since IPCC FAR:

Typical AeroCom Aerosol Model Resolution

Resolution of Atmospheric Models

Model Hierarchy

Resolution depends on complexity and temporal scales

gMet Office

Caveat: Unresolved Scales

Within one model grid box:

Tracers (mass or number) assumed homogeneously mixed

CC [%] Cup Fdown 100 km

Parameterised fractional cloud cover

Mean In-cloud liquid-, ice-water (or sub-grid scale pdf)

Mean up- and down-drafts

Mean clear-sky and cloudy-sky radiative fluxes

Mosaic approach: Fractional surface cover

Dictionary of Simulation Types

Offline (CTM)

- Transport using prescribed met-fields from GCM or RCM

Online (GCM)

- Transport solving the fundamental equations of motion

Nudged (GCM)

- Transport solving the fundamental equations of motion
- Large scale prognostic variables relaxed to assimilated analysis data
- Sub-grid scales (e.g. clouds) not constrained

"AMIP" (Atmospheric Model Intercomparison Project)

- Standardised simulation protocol
- Prescribed SST ("fixed SST run), Ozone, CO₂, topography,...

Climate

- Transport solving the fundamental equations of motion
- Simple ocean models ("slap", "q-flux", "mixed layer") or
- Complex ocean general circulation models AtmosphereOceanGCMs

Outline

Host Models

- Box-, Parcel-, Single Column-, Chemical Transport-, Regional Circulation-, Global Circulation Models
- Offline, Online, Nudged, AMIP, Climate Simulations
- · Resolution, resolved and unresolved processes parameterisations

Aerosol Models

- Bulk Models
- Moment-Based
- Sectional Models

Sources

- Primary emission
- Secondary formation

Transport

• Advection, Turbulence, Convection

Effects

- Radiative Properties
- Aerosol activation and ice nucleation
- Radiative "effect", "forcing", "feedback"

Removal

- Dry deposition & sedimentation
- Scavenging

Aerosol Representation in Atmospheric Models

Aerosol microphysical state determined by:

Caveat: models generally ignore the effects of non-spherical shapes...

Electron-microscopic image of black carbon aerosol (From Heintzenberg et al., 2003)

Aerosol Representation in Atmospheric Models

Key Model Types

Bulk ("mass based")

Component masses only prognostic variable. Size and mixing assumed.

- Prognostic size, external mixing through several "mor" $\int_{\infty}^{\infty} K(q, v)^{n(q, t)} dq^{-1}$ Applied with/without microphysics, with various 2)
- **3)** Sectional ("bir": $Q_{1} = Q_{2} = Q_{1} = Q_{2} = Q_{2$

Aerosol Modelling: Aerosol Models

UNIVERSITY OF OXFORD

Outline

Host Models

- Box-, Parcel-, Single Column-, Chemical Transport-, Regional Circulation-, Global Circulation Models
- · Offline, Online, Nudged, AMIP, Climate Simulations
- · Resolution, resolved and unresolved processes parameterisations

Aerosol Models

- Bulk Models
- Moment-Based
- Sectional Models

Sources

- Primary emission
- Secondary formation

Transport

Advection, Turbulence, Convection

Effects

- Radiative Properties
- Aerosol activation and ice nucleation
- Radiative "effect", "forcing", "feedback"

Removal

- Dry deposition & sedimentation
- Scavenging

Implementation of Primary Emissions

Aerosol Modelling: Sources

UNIVERSITY OF

Prognostic Emission Sub-Models

(Other emissions are generally prescribed from inventories)

Aerosol Modelling: Sources

JNIVERSITY OF

Emissions in AeroCom Phase I Experiment A:

Caveat: Emission inventories currently provide only mass fluxes. Effective emission size distributions (at model scale) remain uncertain.

Secondary formation in the atmosphere

Chemical formation of low-volatility products

All models: sulfur cycle with homogeneous and heterogeneous chemistry Some models: detailed inorganic chemistry, ammonium / nitrate system Few models: secondary organic aerosol formation

Sulfur cycle in AeroCom Phase I Experiment A:

OXFORD

Textor et al. (2006)

Outline

Host Models

- Box-, Parcel-, Single Column-, Chemical Transport-, Regional Circulation-, Global Circulation Models
- Offline, Online, Nudged, AMIP, Climate Simulations
- · Resolution, resolved and unresolved processes parameterisations

Aerosol Models

- Bulk Models
- Moment-Based
- Sectional Models

Sources

- Primary emission
- Secondary formation

Transport

• Advection, Turbulence, Convection

Effects

- Radiative Properties
- Aerosol activation and ice nucleation
- · Radiative "effect", "forcing", "feedback"

Removal

- Dry deposition & sedimentation
- Scavenging

Aerosol Radiative Properties

Simple implementation (not uncommon in CTMs and some GCMs):

Aerosol Radiative Properties

Complex implementation (or simplifications thereof):

UNIVERSITY OF OXFORD

Aerosol-Cloud Coupling

Aerosol activation

i) Highly empirical:

Boucher and Lohmann (1995)

Aerosol-Cloud Coupling

ii) Köhler (1936) based – Combining Raoult's Law and Kelvin Equation:

OXFORD

Aerosol-Cloud Coupling

Difficulty?

Caveat: Estimation of maximum supersaturation

$$\begin{split} &\frac{dS}{dt} = \alpha V - \gamma \frac{dW}{dt} \quad \text{where} \\ &\frac{dW}{dt} = 4\pi \rho_w GS \int \left(r^2(\tau) + 2G \int_{\tau}^{t_{max}} S(t) dt \right)^{1/2} n(S') dS' \end{split}$$

Solutions to supersaturation balance equation:

- i) Empirical fit to detailed parcel model (Abdul-Razzak and Ghan, 2000)
- ii) Population splitting allows to minimise empirical contributions: (Nenes & Seinfeld, 2003; Barahona et al., 2010)

Caveats: updraft velocity is sub-grid scale and not prognostic in mass-flux based convection schemes. Diagnosed from prognostic variables e.g. via TKE.

Interested? Posters by Rosalind West and Steve Ghan

OXFORD

Aerosol-Cloud Coupling

Coupling to cloud microphysics:

i) Two moment cloud microphysics schemes:

 $\frac{\partial N}{\partial t} = \frac{DN^{act}}{Dt} + \left(\frac{\partial N}{\partial t}\right)^{Transport} + \left(\frac{\partial N}{\partial t}\right)^{Sources} + \left(\frac{\partial N}{\partial t}\right)^{Sinks}$ $\frac{\partial M}{\partial t} = \frac{DM^{cond}}{Dt} + \left(\frac{\partial M}{\partial t}\right)^{Transport} + \left(\frac{\partial M}{\partial t}\right)^{Sources} + \left(\frac{\partial M}{\partial t}\right)^{Sinks}$

directly coupled to cloud radiative properties and precipitation scheme

ii) Single moment (bulk) cloud microphysics schemes

Caveat:Diagnostic calculation of r_{eff} from N^{act} and MNo or highly parameterised effects on precipitationLack of reliable evaluation data...

Aerosol Radiative Effects

Radiative Forcing

"the change in net (down minus up) irradiance (solar plus longwave; in W m-2) at the tropopause after allowing for stratospheric temperatures to readjust to radiative equilibrium, but with surface and tropospheric temperatures and state held fixed at the unperturbed values"

(IPCC, Forster et al., 2007)

Caveat:

Instantaneous definition excludes (fast) cloud-lifetime and dynamical effects

Anthropogenic Perturbations to the Climate System

Current best estimate of anthropogenic radiative forcing:

Radiative Forcing Components

Intergovernmental Panel on Climate Change estimate of present day global annual mean anthropogenic radiative forcings (Solomon et al., 2007)

Anthropogenic Perturbations to the Climate System

Including (fast) cloud-lifetime effect:

Radiative Forcing Components

Outline

Host Models

- Box-, Parcel-, Single Column-, Chemical Transport-, Regional Circulation-, Global Circulation Models
- Offline, Online, Nudged, AMIP, Climate Simulations
- · Resolution, resolved and unresolved processes parameterisations

Aerosol Models

- Bulk Models
- Moment-Based
- Sectional Models

Sources

- Primary emission
- Secondary formation

Transport

Advection, Turbulence, Convection

Effects

- Radiative Properties
- Aerosol activation and ice nucleation
- Radiative "effect", "forcing", "feedback"

Removal

- Dry deposition & sedimentation
- Scavenging

Dry Deposition

Most models use classical serial resistance approach:

$$F_d = C\rho_{air}v_d \qquad v_d = v_g + \frac{1}{(r_a + r_s)}$$

Caveats:

i) Surface resistance terms are uncertain and land-type specific. Only few models consider explicit mosaic approach. ii) Aerodynamic resistance is dependent on turbulent transport in the boundary layer – difficult to simulate with few layers, expensive with many layers

UNIVERSITY OF

Dry Deposition

Diversity of effective total dry deposition rate coefficients in AeroCom Phase I:

Aerosol Modelling: Removal

UNIVERSITY OF

Caveat: Wet Deposition

Convolution of difficult (sub-grid scale) processes:

- i) Cloud microphysics not existent (CTMs) or of limited complexity (GCMs)
- ii) Simulated precipitation in GCMs is imperfect
- iii) Uptake processes are difficult (water) or insufficiently (ice) understood
- iv) Cloud cycling and evaporation often ignored

OXFORD

Caveat: Wet Deposition

Impaction scavenging coefficients from explicit calculation

Difficult to approximate with simple aerosol representations

Caveat: Wet Deposition

UNIVERSITY OF OXFORD

Aerosol Residence Time

UNIVERSITY OF

Textor et al. (2006)

Host Models

- Box-, Parcel-, Single Column-, Chemical Transport-, Regional Circulation-, Global Circulation Models
- · Offline, Online, Nudged, AMIP, Climate Simulations
- · Resolution, resolved and unresolved processes parameterisations

Aerosol Models

- Bulk Models
- Moment-Based
- Sectional Models

Sources

- Primary emission
- Secondary formation

Transport

Advection, Turbulence, Convection

Effects

- Radiative Properties
- Aerosol activation and ice nucleation
- Radiative "effect", "forcing", "feedback"

Removal

- Dry deposition & sedimentation
- Scavenging

